Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import hashlib | |
import os | |
import queue | |
import threading | |
import warnings | |
import librosa | |
import numpy as np | |
import onnxruntime as ort | |
import soundfile as sf | |
import torch | |
from tqdm import tqdm | |
warnings.filterwarnings("ignore") | |
stem_naming = {'Vocals': 'Instrumental', 'Other': 'Instruments', 'Instrumental': 'Vocals', 'Drums': 'Drumless', 'Bass': 'Bassless'} | |
class MDXModel: | |
def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000): | |
self.dim_f = dim_f | |
self.dim_t = dim_t | |
self.dim_c = 4 | |
self.n_fft = n_fft | |
self.hop = hop | |
self.stem_name = stem_name | |
self.compensation = compensation | |
self.n_bins = self.n_fft // 2 + 1 | |
self.chunk_size = hop * (self.dim_t - 1) | |
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device) | |
out_c = self.dim_c | |
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device) | |
def stft(self, x): | |
x = x.reshape([-1, self.chunk_size]) | |
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 4, self.n_bins, self.dim_t]) | |
return x[:, :, :self.dim_f] | |
def istft(self, x, freq_pad=None): | |
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad | |
x = torch.cat([x, freq_pad], -2) | |
# c = 4*2 if self.target_name=='*' else 2 | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t]) | |
x = x.permute([0, 2, 3, 1]) | |
x = x.contiguous() | |
x = torch.view_as_complex(x) | |
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True) | |
return x.reshape([-1, 2, self.chunk_size]) | |
class MDX: | |
DEFAULT_SR = 44100 | |
# Unit: seconds | |
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR | |
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR | |
DEFAULT_PROCESSOR = 0 | |
def __init__(self, model_path: str, params: MDXModel, processor=DEFAULT_PROCESSOR): | |
# Set the device and the provider (CPU or CUDA) | |
#self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu') | |
self.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') | |
#self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider'] | |
self.provider = ['CPUExecutionProvider'] | |
self.model = params | |
# Load the ONNX model using ONNX Runtime | |
self.ort = ort.InferenceSession(model_path, providers=self.provider) | |
# Preload the model for faster performance | |
self.ort.run(None, {'input': torch.rand(1, 4, params.dim_f, params.dim_t).numpy()}) | |
self.process = lambda spec: self.ort.run(None, {'input': spec.cpu().numpy()})[0] | |
self.prog = None | |
def get_hash(model_path): | |
try: | |
with open(model_path, 'rb') as f: | |
f.seek(- 10000 * 1024, 2) | |
model_hash = hashlib.md5(f.read()).hexdigest() | |
except: | |
model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest() | |
return model_hash | |
def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE): | |
""" | |
Segment or join segmented wave array | |
Args: | |
wave: (np.array) Wave array to be segmented or joined | |
combine: (bool) If True, combines segmented wave array. If False, segments wave array. | |
chunk_size: (int) Size of each segment (in samples) | |
margin_size: (int) Size of margin between segments (in samples) | |
Returns: | |
numpy array: Segmented or joined wave array | |
""" | |
if combine: | |
processed_wave = None # Initializing as None instead of [] for later numpy array concatenation | |
for segment_count, segment in enumerate(wave): | |
start = 0 if segment_count == 0 else margin_size | |
end = None if segment_count == len(wave) - 1 else -margin_size | |
if margin_size == 0: | |
end = None | |
if processed_wave is None: # Create array for first segment | |
processed_wave = segment[:, start:end] | |
else: # Concatenate to existing array for subsequent segments | |
processed_wave = np.concatenate((processed_wave, segment[:, start:end]), axis=-1) | |
else: | |
processed_wave = [] | |
sample_count = wave.shape[-1] | |
if chunk_size <= 0 or chunk_size > sample_count: | |
chunk_size = sample_count | |
if margin_size > chunk_size: | |
margin_size = chunk_size | |
for segment_count, skip in enumerate(range(0, sample_count, chunk_size)): | |
margin = 0 if segment_count == 0 else margin_size | |
end = min(skip + chunk_size + margin_size, sample_count) | |
start = skip - margin | |
cut = wave[:, start:end].copy() | |
processed_wave.append(cut) | |
if end == sample_count: | |
break | |
return processed_wave | |
def pad_wave(self, wave): | |
""" | |
Pad the wave array to match the required chunk size | |
Args: | |
wave: (np.array) Wave array to be padded | |
Returns: | |
tuple: (padded_wave, pad, trim) | |
- padded_wave: Padded wave array | |
- pad: Number of samples that were padded | |
- trim: Number of samples that were trimmed | |
""" | |
n_sample = wave.shape[1] | |
trim = self.model.n_fft // 2 | |
gen_size = self.model.chunk_size - 2 * trim | |
pad = gen_size - n_sample % gen_size | |
# Padded wave | |
wave_p = np.concatenate((np.zeros((2, trim)), wave, np.zeros((2, pad)), np.zeros((2, trim))), 1) | |
mix_waves = [] | |
for i in range(0, n_sample + pad, gen_size): | |
waves = np.array(wave_p[:, i:i + self.model.chunk_size]) | |
mix_waves.append(waves) | |
print(self.device) | |
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device) | |
return mix_waves, pad, trim | |
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int): | |
""" | |
Process each wave segment in a multi-threaded environment | |
Args: | |
mix_waves: (torch.Tensor) Wave segments to be processed | |
trim: (int) Number of samples trimmed during padding | |
pad: (int) Number of samples padded during padding | |
q: (queue.Queue) Queue to hold the processed wave segments | |
_id: (int) Identifier of the processed wave segment | |
Returns: | |
numpy array: Processed wave segment | |
""" | |
mix_waves = mix_waves.split(1) | |
with torch.no_grad(): | |
pw = [] | |
for mix_wave in mix_waves: | |
self.prog.update() | |
spec = self.model.stft(mix_wave) | |
processed_spec = torch.tensor(self.process(spec)) | |
processed_wav = self.model.istft(processed_spec.to(self.device)) | |
processed_wav = processed_wav[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).cpu().numpy() | |
pw.append(processed_wav) | |
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad] | |
q.put({_id: processed_signal}) | |
return processed_signal | |
def process_wave(self, wave: np.array, mt_threads=1): | |
""" | |
Process the wave array in a multi-threaded environment | |
Args: | |
wave: (np.array) Wave array to be processed | |
mt_threads: (int) Number of threads to be used for processing | |
Returns: | |
numpy array: Processed wave array | |
""" | |
self.prog = tqdm(total=0) | |
chunk = wave.shape[-1] // mt_threads | |
waves = self.segment(wave, False, chunk) | |
# Create a queue to hold the processed wave segments | |
q = queue.Queue() | |
threads = [] | |
for c, batch in enumerate(waves): | |
mix_waves, pad, trim = self.pad_wave(batch) | |
self.prog.total = len(mix_waves) * mt_threads | |
thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c)) | |
thread.start() | |
threads.append(thread) | |
for thread in threads: | |
thread.join() | |
self.prog.close() | |
processed_batches = [] | |
while not q.empty(): | |
processed_batches.append(q.get()) | |
processed_batches = [list(wave.values())[0] for wave in | |
sorted(processed_batches, key=lambda d: list(d.keys())[0])] | |
assert len(processed_batches) == len(waves), 'Incomplete processed batches, please reduce batch size!' | |
return self.segment(processed_batches, True, chunk) | |
def run_mdx(model_params, output_dir, model_path, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2): | |
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') | |
#device_properties = torch.cuda.get_device_properties(device) | |
print("Device", device) | |
vram_gb = 12 #device_properties.total_memory / 1024**3 | |
m_threads = 1 if vram_gb < 8 else 2 | |
model_hash = MDX.get_hash(model_path) | |
mp = model_params.get(model_hash) | |
model = MDXModel( | |
device, | |
dim_f=mp["mdx_dim_f_set"], | |
dim_t=2 ** mp["mdx_dim_t_set"], | |
n_fft=mp["mdx_n_fft_scale_set"], | |
stem_name=mp["primary_stem"], | |
compensation=mp["compensate"] | |
) | |
mdx_sess = MDX(model_path, model) | |
wave, sr = librosa.load(filename, mono=False, sr=44100) | |
# normalizing input wave gives better output | |
peak = max(np.max(wave), abs(np.min(wave))) | |
wave /= peak | |
if denoise: | |
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads)) | |
wave_processed *= 0.5 | |
else: | |
wave_processed = mdx_sess.process_wave(wave, m_threads) | |
# return to previous peak | |
wave_processed *= peak | |
stem_name = model.stem_name if suffix is None else suffix | |
main_filepath = None | |
if not exclude_main: | |
main_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav") | |
sf.write(main_filepath, wave_processed.T, sr) | |
invert_filepath = None | |
if not exclude_inversion: | |
diff_stem_name = stem_naming.get(stem_name) if invert_suffix is None else invert_suffix | |
stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name | |
invert_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav") | |
sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr) | |
if not keep_orig: | |
os.remove(filename) | |
del mdx_sess, wave_processed, wave | |
gc.collect() | |
return main_filepath, invert_filepath | |