r3aperdev commited on
Commit
95c1bb3
·
1 Parent(s): 2382cac
Files changed (1) hide show
  1. model.py +110 -0
model.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import typing as t
3
+
4
+ import torch
5
+ import transformers
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+
10
+ def build_model_and_tokenizer_for(
11
+ model_name: str
12
+ ) -> t.Tuple[transformers.AutoModelForCausalLM, transformers.AutoTokenizer]:
13
+ '''Sets up the model and accompanying objects.'''
14
+ logger.info(f"Loading tokenizer for {model_name}")
15
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
16
+
17
+ # NOTE(11b): non-OPT models support passing this in at inference time, might
18
+ # be worth refactoring for a debug version so we're able to experiment on
19
+ # the fly
20
+ bad_words_ids = [
21
+ tokenizer(bad_word, add_special_tokens=False).input_ids
22
+ for bad_word in _build_bad_words_list_for(model_name)
23
+ ]
24
+
25
+ logger.info(f"Loading the {model_name} model")
26
+ model = transformers.AutoModelForCausalLM.from_pretrained(
27
+ model_name, bad_words_ids=bad_words_ids)
28
+ model.eval().half().to("cuda")
29
+
30
+ logger.info("Model and tokenizer are ready")
31
+ return model, tokenizer
32
+
33
+
34
+ def run_raw_inference(model: transformers.AutoModelForCausalLM,
35
+ tokenizer: transformers.AutoTokenizer, prompt: str,
36
+ user_message: str, **kwargs: t.Any) -> str:
37
+ '''
38
+ Runs inference on the model, and attempts to returns only the newly
39
+ generated text.
40
+
41
+ :param model: Model to perform inference with.
42
+ :param tokenizer: Tokenizer to tokenize input with.
43
+ :param prompt: Input to feed to the model.
44
+ :param user_message: The user's raw message, exactly as appended to the end
45
+ of `prompt`. Used for trimming the original input from the model output.
46
+ :return: Decoded model generation.
47
+ '''
48
+ tokenized_items = tokenizer(prompt, return_tensors="pt").to("cuda")
49
+
50
+ # Atrocious code to stop generation when the model outputs "\nYou: " in
51
+ # freshly generated text. Feel free to send in a PR if you know of a
52
+ # cleaner way to do this.
53
+ stopping_criteria_list = transformers.StoppingCriteriaList([
54
+ _SentinelTokenStoppingCriteria(
55
+ sentinel_token_ids=tokenizer(
56
+ "\nYou:",
57
+ add_special_tokens=False,
58
+ return_tensors="pt",
59
+ ).input_ids.to("cuda"),
60
+ starting_idx=tokenized_items.input_ids.shape[-1])
61
+ ])
62
+
63
+ logits = model.generate(stopping_criteria=stopping_criteria_list,
64
+ **tokenized_items,
65
+ **kwargs)
66
+ output = tokenizer.decode(logits[0], skip_special_tokens=True)
67
+
68
+ logger.debug("Before trimming, model output was: `%s`", output)
69
+
70
+ # Trim out the input prompt from the generated output.
71
+ if (idx := prompt.rfind(user_message)) != -1:
72
+ trimmed_output = output[idx + len(user_message) - 1:].strip()
73
+ logger.debug("After trimming, it became: `%s`", trimmed_output)
74
+
75
+ return trimmed_output
76
+ else:
77
+ raise Exception(
78
+ "Couldn't find user message in the model's output. What?")
79
+
80
+
81
+ def _build_bad_words_list_for(_model_name: str) -> t.List[str]:
82
+ '''Builds a list of bad words for the given model.'''
83
+
84
+ # NOTE(11b): This was implemented as a function because each model size
85
+ # seems to have it quirks at the moment, but this is a rushed implementation
86
+ # so I'm not handling that, hence the dumb return here.
87
+ return ["Persona:", "Scenario:", "<START>"]
88
+
89
+
90
+ class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):
91
+
92
+ def __init__(self, sentinel_token_ids: torch.LongTensor,
93
+ starting_idx: int):
94
+ transformers.StoppingCriteria.__init__(self)
95
+ self.sentinel_token_ids = sentinel_token_ids
96
+ self.starting_idx = starting_idx
97
+
98
+ def __call__(self, input_ids: torch.LongTensor,
99
+ _scores: torch.FloatTensor) -> bool:
100
+ for sample in input_ids:
101
+ trimmed_sample = sample[self.starting_idx:]
102
+ # Can't unfold, output is still too tiny. Skip.
103
+ if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]:
104
+ continue
105
+
106
+ for window in trimmed_sample.unfold(
107
+ 0, self.sentinel_token_ids.shape[-1], 1):
108
+ if torch.all(torch.eq(self.sentinel_token_ids, window)):
109
+ return True
110
+ return False