Spaces:
Runtime error
Runtime error
init
Browse files- app.py +376 -0
- requirements.txt +13 -0
app.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import baseline dependencies
|
2 |
+
import csv
|
3 |
+
import time
|
4 |
+
from datetime import date
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import pandas_datareader as data
|
9 |
+
import requests
|
10 |
+
import streamlit as st
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
from plotly import graph_objs as go
|
13 |
+
from prophet import Prophet
|
14 |
+
from prophet.plot import plot_plotly
|
15 |
+
# summarisation (Pegasus) and sentiment analysis (BERT) models
|
16 |
+
from transformers import (BertForSequenceClassification, BertTokenizer,
|
17 |
+
PegasusTokenizer, TFPegasusForConditionalGeneration,
|
18 |
+
pipeline)
|
19 |
+
|
20 |
+
# Setting streamlit page config to wide
|
21 |
+
st.set_page_config(layout='wide')
|
22 |
+
|
23 |
+
|
24 |
+
@st.cache(allow_output_mutation=True, show_spinner=False)
|
25 |
+
# Setup summarisation model
|
26 |
+
def get_summarisation_model():
|
27 |
+
sum_model_name = "human-centered-summarization/financial-summarization-pegasus"
|
28 |
+
sum_tokenizer = PegasusTokenizer.from_pretrained(sum_model_name)
|
29 |
+
sum_model = TFPegasusForConditionalGeneration.from_pretrained(
|
30 |
+
sum_model_name)
|
31 |
+
|
32 |
+
# returning model and tokenizer
|
33 |
+
return sum_model, sum_tokenizer
|
34 |
+
|
35 |
+
|
36 |
+
@st.cache(allow_output_mutation=True, show_spinner=False)
|
37 |
+
# Setup sentiment analysis model
|
38 |
+
def get_sentiment_pepeline():
|
39 |
+
sen_model_name = "ahmedrachid/FinancialBERT-Sentiment-Analysis"
|
40 |
+
sen_tokenizer = BertTokenizer.from_pretrained(sen_model_name)
|
41 |
+
sen_model = BertForSequenceClassification.from_pretrained(
|
42 |
+
sen_model_name, num_labels=3)
|
43 |
+
sentiment_nlp = pipeline("sentiment-analysis",
|
44 |
+
model=sen_model, tokenizer=sen_tokenizer)
|
45 |
+
|
46 |
+
# returning sentiment pipeline
|
47 |
+
return sentiment_nlp
|
48 |
+
|
49 |
+
|
50 |
+
@st.cache(show_spinner=False, suppress_st_warning=True)
|
51 |
+
# Get all links from Google News
|
52 |
+
def search_urls(ticker, num, date):
|
53 |
+
|
54 |
+
# https://developers.google.com/custom-search/docs/xml_results_appendices#interfaceLanguages
|
55 |
+
|
56 |
+
# Request headers and parameters
|
57 |
+
headers = {
|
58 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36",
|
59 |
+
}
|
60 |
+
|
61 |
+
params = {
|
62 |
+
"as_sitesearch": "finance.yahoo.com", # we only want results from Yahoo Finance
|
63 |
+
"hl": "en", # language of the interface
|
64 |
+
"gl": "us", # country of the search
|
65 |
+
"tbm": "nws", # news results
|
66 |
+
"lr": "lang_en" # language filter
|
67 |
+
}
|
68 |
+
|
69 |
+
# base URL
|
70 |
+
url = "https://www.google.com/search"
|
71 |
+
|
72 |
+
# search query
|
73 |
+
params["as_epq"] = ticker
|
74 |
+
params["as_occt"] = ticker
|
75 |
+
# number of search results per page
|
76 |
+
params["num"] = num
|
77 |
+
|
78 |
+
# articles timeframe
|
79 |
+
# d = past 24h, h = past hour, w = past week, m = pasth month
|
80 |
+
if date == "Past week":
|
81 |
+
params["as_qdr"] = "w"
|
82 |
+
elif date == "Past day":
|
83 |
+
params["as_qdr"] = "d"
|
84 |
+
|
85 |
+
r = requests.get(url, headers=headers, params=params,
|
86 |
+
cookies={'CONSENT': 'YES+'})
|
87 |
+
time.sleep(5)
|
88 |
+
st.write("Searched URL:")
|
89 |
+
st.write(r.url) # debugging
|
90 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
91 |
+
atags = soup.find_all("a", "WlydOe")
|
92 |
+
hrefs = [link["href"] for link in atags]
|
93 |
+
|
94 |
+
return hrefs
|
95 |
+
|
96 |
+
|
97 |
+
@st.cache(show_spinner=False)
|
98 |
+
# Extract title, date, and content of the article from all given URLs
|
99 |
+
def search_scrape(urls):
|
100 |
+
articles = []
|
101 |
+
titles = []
|
102 |
+
post_dates = []
|
103 |
+
|
104 |
+
for url in urls:
|
105 |
+
r = requests.get(url)
|
106 |
+
time.sleep(5)
|
107 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
108 |
+
|
109 |
+
# title
|
110 |
+
title = soup.find("header", "caas-title-wrapper")
|
111 |
+
# handling missing titles
|
112 |
+
if title is not None:
|
113 |
+
titles.append(title.text)
|
114 |
+
else:
|
115 |
+
titles.append("N/A")
|
116 |
+
|
117 |
+
# posting date of the article
|
118 |
+
date = soup.find("time", "caas-attr-meta-time")
|
119 |
+
# handling missing dates
|
120 |
+
if date is not None:
|
121 |
+
post_dates.append(date.text)
|
122 |
+
else:
|
123 |
+
post_dates.append("N/A")
|
124 |
+
|
125 |
+
# article content
|
126 |
+
# all the paragraphs within the article
|
127 |
+
paragraphs = soup.find_all("div", "caas-body")
|
128 |
+
text = [paragraph.text for paragraph in paragraphs]
|
129 |
+
# extract only the first 300 words (needs to be done to avoid limit
|
130 |
+
# problems with the summarisation model)
|
131 |
+
words = " ".join(text).split(" ")[:350]
|
132 |
+
article = " ".join(words)
|
133 |
+
articles.append(article)
|
134 |
+
|
135 |
+
return titles, post_dates, articles
|
136 |
+
|
137 |
+
|
138 |
+
@st.cache(show_spinner=False)
|
139 |
+
# Summarise all given articles using a fine-tuned Pegasus Transformers model
|
140 |
+
def summarise_articles(sum_model, sum_tokenizer, articles):
|
141 |
+
summaries = []
|
142 |
+
for article in articles:
|
143 |
+
|
144 |
+
# source
|
145 |
+
# https://huggingface.co/human-centered-summarization/financial-summarization-pegasus
|
146 |
+
input_ids = sum_tokenizer(
|
147 |
+
article, return_tensors="tf").input_ids
|
148 |
+
output = sum_model.generate(
|
149 |
+
input_ids, max_length=55, num_beans=5, early_stopping=True)
|
150 |
+
summary = sum_tokenizer.decode(
|
151 |
+
output[0], skip_special_tokens=True)
|
152 |
+
summaries.append(summary)
|
153 |
+
|
154 |
+
return summaries
|
155 |
+
|
156 |
+
|
157 |
+
@st.cache(show_spinner=False)
|
158 |
+
# Join all data into rows
|
159 |
+
def create_output_array(titles, post_dates, summarised_articles, sentiment_scores, raw_urls):
|
160 |
+
output_array = []
|
161 |
+
for idx in range(len(summarised_articles)):
|
162 |
+
row = [
|
163 |
+
titles[idx],
|
164 |
+
post_dates[idx],
|
165 |
+
summarised_articles[idx],
|
166 |
+
sentiment_scores[idx]["label"].capitalize(),
|
167 |
+
"{:.0%}".format(sentiment_scores[idx]["score"]),
|
168 |
+
raw_urls[idx]
|
169 |
+
]
|
170 |
+
output_array.append(row)
|
171 |
+
|
172 |
+
return output_array
|
173 |
+
|
174 |
+
|
175 |
+
@st.cache(show_spinner=False)
|
176 |
+
# Convert dataframe to .csv file
|
177 |
+
def convert_df(df):
|
178 |
+
return df.to_csv().encode("utf-8")
|
179 |
+
|
180 |
+
# ------------------------------------------------------------------------------
|
181 |
+
|
182 |
+
|
183 |
+
@st.cache(show_spinner=False)
|
184 |
+
# Load data from Yahoo Finance
|
185 |
+
def load_data(ticker, start, end):
|
186 |
+
df = data.DataReader(ticker, "yahoo", start, end)
|
187 |
+
df.reset_index(inplace=True)
|
188 |
+
return df
|
189 |
+
|
190 |
+
|
191 |
+
@st.cache(show_spinner=False)
|
192 |
+
# Predict stock trend for N years using Prophet
|
193 |
+
def predict(df, period):
|
194 |
+
|
195 |
+
df_train = df[["Date", "Close"]]
|
196 |
+
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
|
197 |
+
|
198 |
+
model = Prophet()
|
199 |
+
|
200 |
+
model.fit(df_train)
|
201 |
+
future = model.make_future_dataframe(periods=period)
|
202 |
+
forecast = model.predict(future)
|
203 |
+
|
204 |
+
return model, forecast
|
205 |
+
|
206 |
+
|
207 |
+
def main_page():
|
208 |
+
|
209 |
+
# Financial News Analysis feature
|
210 |
+
|
211 |
+
# Streamlit text
|
212 |
+
|
213 |
+
st.sidebar.markdown("## Financial News Analysis")
|
214 |
+
st.sidebar.write(
|
215 |
+
"Scrape, auto summarise and calculate sentiment for stock and crypto news.")
|
216 |
+
|
217 |
+
# User input
|
218 |
+
ticker = st.text_input("Ticker:", "TSLA")
|
219 |
+
num = st.number_input("Number of articles:", 5, 15, 10)
|
220 |
+
date = st.selectbox(
|
221 |
+
"Timeline:", ["Past week", "Past day"])
|
222 |
+
|
223 |
+
search = st.button("Search")
|
224 |
+
|
225 |
+
st.info("Please do not spam the search button")
|
226 |
+
st.markdown("---")
|
227 |
+
|
228 |
+
# If button is pressed
|
229 |
+
if search:
|
230 |
+
|
231 |
+
with st.spinner("Processing articles, please wait..."):
|
232 |
+
# Search query and return all articles' links
|
233 |
+
raw_urls = search_urls(ticker, num, date)
|
234 |
+
|
235 |
+
# If any problems happened (e.g., blocked by Google's server) stop app
|
236 |
+
if not raw_urls:
|
237 |
+
st.error("Please wait a few minutes before trying again")
|
238 |
+
else:
|
239 |
+
|
240 |
+
# Scrap title, posting date and article content from all the URLs
|
241 |
+
titles, post_dates, articles = search_scrape(raw_urls)
|
242 |
+
|
243 |
+
# Summarise all articles
|
244 |
+
summarised_articles = summarise_articles(
|
245 |
+
sum_model, sum_tokenizer, articles)
|
246 |
+
|
247 |
+
# Calculate sentiment for all articles
|
248 |
+
# source
|
249 |
+
# https://huggingface.co/ahmedrachid/FinancialBERT-Sentiment-Analysis
|
250 |
+
sentiment_scores = sentiment_pipeline(summarised_articles)
|
251 |
+
|
252 |
+
# Create dataframe
|
253 |
+
output_array = create_output_array(
|
254 |
+
titles, post_dates, summarised_articles, sentiment_scores, raw_urls)
|
255 |
+
cols = ["Title", "Date", "Summary",
|
256 |
+
"Label", "Confidence", "URL"]
|
257 |
+
df = pd.DataFrame(output_array, columns=cols)
|
258 |
+
|
259 |
+
# Visualise dataframe
|
260 |
+
st.dataframe(df)
|
261 |
+
|
262 |
+
# Convert dataframe to csv and let user download it
|
263 |
+
csv_file = convert_df(df)
|
264 |
+
|
265 |
+
# Download CSV
|
266 |
+
st.download_button(
|
267 |
+
"Save data to CSV", csv_file, "assetsummaries.csv", "text/csv", key="download-csv")
|
268 |
+
|
269 |
+
|
270 |
+
def page2():
|
271 |
+
|
272 |
+
# Stock Trend Forecasting feature
|
273 |
+
|
274 |
+
# Streamlit text
|
275 |
+
st.sidebar.markdown("## Stock Trend Forecasting")
|
276 |
+
st.sidebar.write(
|
277 |
+
"A simple dashboard for stock trend forecasting and analysis.")
|
278 |
+
|
279 |
+
# Start and end date of data
|
280 |
+
start = "2010-01-01"
|
281 |
+
end = date.today().strftime("%Y-%m-%d")
|
282 |
+
|
283 |
+
# Ticker selection
|
284 |
+
ticker = st.text_input("Ticker:", "AAPL")
|
285 |
+
# Loading data from Yahoo Finance
|
286 |
+
df = load_data(ticker, start, end)
|
287 |
+
|
288 |
+
# Period selection
|
289 |
+
n_years = st.number_input("Years of prediction:", 1, 4, 1)
|
290 |
+
period = n_years * 365
|
291 |
+
|
292 |
+
# Start prediction button
|
293 |
+
init = st.button("Predict")
|
294 |
+
|
295 |
+
st.markdown("---")
|
296 |
+
|
297 |
+
# Visualisation
|
298 |
+
# Dropping adj close column
|
299 |
+
df = df.drop(["Adj Close"], axis=1)
|
300 |
+
|
301 |
+
# Visualisation
|
302 |
+
# Exploratory analysis
|
303 |
+
st.subheader("Exploratory analysis")
|
304 |
+
st.write(df.describe())
|
305 |
+
|
306 |
+
# Plot raw closing data with 100 and 200 days MA (for simple analysis)
|
307 |
+
st.subheader("Closing data, MA100 and MA200")
|
308 |
+
|
309 |
+
ma100 = df.Close.rolling(100).mean()
|
310 |
+
ma200 = df.Close.rolling(200).mean()
|
311 |
+
|
312 |
+
fig = go.Figure()
|
313 |
+
fig.update_layout(
|
314 |
+
margin=dict(
|
315 |
+
l=0,
|
316 |
+
r=0,
|
317 |
+
b=0,
|
318 |
+
t=50,
|
319 |
+
pad=4
|
320 |
+
)
|
321 |
+
)
|
322 |
+
fig.add_trace(go.Scatter(x=df["Date"],
|
323 |
+
y=df['Close'], name="stock_close"))
|
324 |
+
fig.add_trace(go.Scatter(x=df["Date"], y=ma100, name="ma100"))
|
325 |
+
fig.add_trace(go.Scatter(x=df["Date"], y=ma200, name="ma200"))
|
326 |
+
fig.layout.update(xaxis_rangeslider_visible=True)
|
327 |
+
st.plotly_chart(fig, use_container_width=True)
|
328 |
+
|
329 |
+
# If button is pressed, start forecasting
|
330 |
+
if init:
|
331 |
+
with st.spinner("Please wait..."):
|
332 |
+
model, forecast = predict(df, period)
|
333 |
+
|
334 |
+
st.markdown("---")
|
335 |
+
st.subheader("Forecast data")
|
336 |
+
st.write(forecast.tail())
|
337 |
+
|
338 |
+
st.subheader(f"Forecast plot for {n_years} years")
|
339 |
+
|
340 |
+
fig = plot_plotly(model, forecast)
|
341 |
+
fig.update_layout(
|
342 |
+
margin=dict(
|
343 |
+
l=0,
|
344 |
+
r=0,
|
345 |
+
b=0,
|
346 |
+
t=0,
|
347 |
+
pad=4
|
348 |
+
)
|
349 |
+
)
|
350 |
+
st.plotly_chart(fig, use_container_width=True)
|
351 |
+
|
352 |
+
st.subheader("Forecast components")
|
353 |
+
fig = model.plot_components(forecast)
|
354 |
+
st.write(fig)
|
355 |
+
|
356 |
+
|
357 |
+
if __name__ == "__main__":
|
358 |
+
|
359 |
+
with st.spinner("Loading all models..."):
|
360 |
+
# Creating summariser and sentiment models
|
361 |
+
sum_model, sum_tokenizer = get_summarisation_model()
|
362 |
+
sentiment_pipeline = get_sentiment_pepeline()
|
363 |
+
|
364 |
+
page_names_to_funcs = {
|
365 |
+
"Financial News Analysis": main_page,
|
366 |
+
"Stock Trend Forecasting": page2
|
367 |
+
}
|
368 |
+
|
369 |
+
st.sidebar.markdown("# Financial Researcher")
|
370 |
+
|
371 |
+
selected_page = st.sidebar.selectbox(
|
372 |
+
"Select a page", page_names_to_funcs.keys())
|
373 |
+
|
374 |
+
st.sidebar.markdown("---")
|
375 |
+
|
376 |
+
page_names_to_funcs[selected_page]()
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==1.4.2
|
2 |
+
DateTime==4.7
|
3 |
+
numpy==1.22.3
|
4 |
+
streamlit==1.12.2
|
5 |
+
plotly==5.10.0
|
6 |
+
prophet==1.1.1
|
7 |
+
pandas-datareader==0.10.0
|
8 |
+
requests==2.27.1
|
9 |
+
beautifulsoup4==4.11.1
|
10 |
+
transformers==4.21.3
|
11 |
+
sentencepiece==0.1.97
|
12 |
+
tensorflow==2.8.0
|
13 |
+
torch==1.11.0
|