xfeat / realtime_demo.py
qubvel-hf's picture
qubvel-hf HF staff
Clean proj with LFS
9b7fcdb
raw
history blame contribute delete
No virus
12.1 kB
"""
"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/
Real-time homography estimation demo. Note that scene has to be planar or just rotate the camera for the estimation to work properly.
"""
import cv2
import numpy as np
import torch
from time import time, sleep
import argparse, sys, tqdm
import threading
from modules.xfeat import XFeat
def argparser():
parser = argparse.ArgumentParser(description="Configurations for the real-time matching demo.")
parser.add_argument('--width', type=int, default=640, help='Width of the video capture stream.')
parser.add_argument('--height', type=int, default=480, help='Height of the video capture stream.')
parser.add_argument('--max_kpts', type=int, default=3_000, help='Maximum number of keypoints.')
parser.add_argument('--method', type=str, choices=['ORB', 'SIFT', 'XFeat'], default='XFeat', help='Local feature detection method to use.')
parser.add_argument('--cam', type=int, default=0, help='Webcam device number.')
return parser.parse_args()
class FrameGrabber(threading.Thread):
def __init__(self, cap):
super().__init__()
self.cap = cap
_, self.frame = self.cap.read()
self.running = False
def run(self):
self.running = True
while self.running:
ret, frame = self.cap.read()
if not ret:
print("Can't receive frame (stream ended?).")
self.frame = frame
sleep(0.01)
def stop(self):
self.running = False
self.cap.release()
def get_last_frame(self):
return self.frame
class CVWrapper():
def __init__(self, mtd):
self.mtd = mtd
def detectAndCompute(self, x, mask=None):
return self.mtd.detectAndCompute(torch.tensor(x).permute(2,0,1).float()[None])[0]
class Method:
def __init__(self, descriptor, matcher):
self.descriptor = descriptor
self.matcher = matcher
def init_method(method, max_kpts):
if method == "ORB":
return Method(descriptor=cv2.ORB_create(max_kpts, fastThreshold=10), matcher=cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True))
elif method == "SIFT":
return Method(descriptor=cv2.SIFT_create(max_kpts, contrastThreshold=-1, edgeThreshold=1000), matcher=cv2.BFMatcher(cv2.NORM_L2, crossCheck=True))
elif method == "XFeat":
return Method(descriptor=CVWrapper(XFeat(top_k = max_kpts)), matcher=XFeat())
else:
raise RuntimeError("Invalid Method.")
class MatchingDemo:
def __init__(self, args):
self.args = args
self.cap = cv2.VideoCapture(args.cam)
self.width = args.width
self.height = args.height
self.ref_frame = None
self.ref_precomp = [[],[]]
self.corners = [[50, 50], [640-50, 50], [640-50, 480-50], [50, 480-50]]
self.current_frame = None
self.H = None
self.setup_camera()
#Init frame grabber thread
self.frame_grabber = FrameGrabber(self.cap)
self.frame_grabber.start()
#Homography params
self.min_inliers = 50
self.ransac_thr = 4.0
#FPS check
self.FPS = 0
self.time_list = []
self.max_cnt = 30 #avg FPS over this number of frames
#Set local feature method here -- we expect cv2 or Kornia convention
self.method = init_method(args.method, max_kpts=args.max_kpts)
# Setting up font for captions
self.font = cv2.FONT_HERSHEY_SIMPLEX
self.font_scale = 0.9
self.line_type = cv2.LINE_AA
self.line_color = (0,255,0)
self.line_thickness = 3
self.window_name = "Real-time matching - Press 's' to set the reference frame."
# Removes toolbar and status bar
cv2.namedWindow(self.window_name, flags=cv2.WINDOW_GUI_NORMAL)
# Set the window size
cv2.resizeWindow(self.window_name, self.width*2, self.height*2)
#Set Mouse Callback
cv2.setMouseCallback(self.window_name, self.mouse_callback)
def setup_camera(self):
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
self.cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, 3)
#self.cap.set(cv2.CAP_PROP_EXPOSURE, 200)
self.cap.set(cv2.CAP_PROP_FPS, 30)
if not self.cap.isOpened():
print("Cannot open camera")
exit()
def draw_quad(self, frame, point_list):
if len(self.corners) > 1:
for i in range(len(self.corners) - 1):
cv2.line(frame, tuple(point_list[i]), tuple(point_list[i + 1]), self.line_color, self.line_thickness, lineType = self.line_type)
if len(self.corners) == 4: # Close the quadrilateral if 4 corners are defined
cv2.line(frame, tuple(point_list[3]), tuple(point_list[0]), self.line_color, self.line_thickness, lineType = self.line_type)
def mouse_callback(self, event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
if len(self.corners) >= 4:
self.corners = [] # Reset corners if already 4 points were clicked
self.corners.append((x, y))
def putText(self, canvas, text, org, fontFace, fontScale, textColor, borderColor, thickness, lineType):
# Draw the border
cv2.putText(img=canvas, text=text, org=org, fontFace=fontFace, fontScale=fontScale,
color=borderColor, thickness=thickness+2, lineType=lineType)
# Draw the text
cv2.putText(img=canvas, text=text, org=org, fontFace=fontFace, fontScale=fontScale,
color=textColor, thickness=thickness, lineType=lineType)
def warp_points(self, points, H, x_offset = 0):
points_np = np.array(points, dtype='float32').reshape(-1,1,2)
warped_points_np = cv2.perspectiveTransform(points_np, H).reshape(-1, 2)
warped_points_np[:, 0] += x_offset
warped_points = warped_points_np.astype(int).tolist()
return warped_points
def create_top_frame(self):
top_frame_canvas = np.zeros((480, 1280, 3), dtype=np.uint8)
top_frame = np.hstack((self.ref_frame, self.current_frame))
color = (3, 186, 252)
cv2.rectangle(top_frame, (2, 2), (self.width*2-2, self.height-2), color, 5) # Orange color line as a separator
top_frame_canvas[0:self.height, 0:self.width*2] = top_frame
# Adding captions on the top frame canvas
self.putText(canvas=top_frame_canvas, text="Reference Frame:", org=(10, 30), fontFace=self.font,
fontScale=self.font_scale, textColor=(0,0,0), borderColor=color, thickness=1, lineType=self.line_type)
self.putText(canvas=top_frame_canvas, text="Target Frame:", org=(650, 30), fontFace=self.font,
fontScale=self.font_scale, textColor=(0,0,0), borderColor=color, thickness=1, lineType=self.line_type)
self.draw_quad(top_frame_canvas, self.corners)
return top_frame_canvas
def process(self):
# Create a blank canvas for the top frame
top_frame_canvas = self.create_top_frame()
# Match features and draw matches on the bottom frame
bottom_frame = self.match_and_draw(self.ref_frame, self.current_frame)
# Draw warped corners
if self.H is not None and len(self.corners) > 1:
self.draw_quad(top_frame_canvas, self.warp_points(self.corners, self.H, self.width))
# Stack top and bottom frames vertically on the final canvas
canvas = np.vstack((top_frame_canvas, bottom_frame))
cv2.imshow(self.window_name, canvas)
def match_and_draw(self, ref_frame, current_frame):
matches, good_matches = [], []
kp1, kp2 = [], []
points1, points2 = [], []
# Detect and compute features
if self.args.method in ['SIFT', 'ORB']:
kp1, des1 = self.ref_precomp
kp2, des2 = self.method.descriptor.detectAndCompute(current_frame, None)
else:
current = self.method.descriptor.detectAndCompute(current_frame)
kpts1, descs1 = self.ref_precomp['keypoints'], self.ref_precomp['descriptors']
kpts2, descs2 = current['keypoints'], current['descriptors']
idx0, idx1 = self.method.matcher.match(descs1, descs2, 0.82)
points1 = kpts1[idx0].cpu().numpy()
points2 = kpts2[idx1].cpu().numpy()
if len(kp1) > 10 and len(kp2) > 10 and self.args.method in ['SIFT', 'ORB']:
# Match descriptors
matches = self.method.matcher.match(des1, des2)
if len(matches) > 10:
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = kp1[match.queryIdx].pt
points2[i, :] = kp2[match.trainIdx].pt
if len(points1) > 10 and len(points2) > 10:
# Find homography
self.H, inliers = cv2.findHomography(points1, points2, cv2.USAC_MAGSAC, self.ransac_thr, maxIters=700, confidence=0.995)
inliers = inliers.flatten() > 0
if inliers.sum() < self.min_inliers:
self.H = None
if self.args.method in ["SIFT", "ORB"]:
good_matches = [m for i,m in enumerate(matches) if inliers[i]]
else:
kp1 = [cv2.KeyPoint(p[0],p[1], 5) for p in points1[inliers]]
kp2 = [cv2.KeyPoint(p[0],p[1], 5) for p in points2[inliers]]
good_matches = [cv2.DMatch(i,i,0) for i in range(len(kp1))]
# Draw matches
matched_frame = cv2.drawMatches(ref_frame, kp1, current_frame, kp2, good_matches, None, matchColor=(0, 200, 0), flags=2)
else:
matched_frame = np.hstack([ref_frame, current_frame])
color = (240, 89, 169)
# Add a colored rectangle to separate from the top frame
cv2.rectangle(matched_frame, (2, 2), (self.width*2-2, self.height-2), color, 5)
# Adding captions on the top frame canvas
self.putText(canvas=matched_frame, text="%s Matches: %d"%(self.args.method, len(good_matches)), org=(10, 30), fontFace=self.font,
fontScale=self.font_scale, textColor=(0,0,0), borderColor=color, thickness=1, lineType=self.line_type)
# Adding captions on the top frame canvas
self.putText(canvas=matched_frame, text="FPS (registration): {:.1f}".format(self.FPS), org=(650, 30), fontFace=self.font,
fontScale=self.font_scale, textColor=(0,0,0), borderColor=color, thickness=1, lineType=self.line_type)
return matched_frame
def main_loop(self):
self.current_frame = self.frame_grabber.get_last_frame()
self.ref_frame = self.current_frame.copy()
self.ref_precomp = self.method.descriptor.detectAndCompute(self.ref_frame, None) #Cache ref features
while True:
if self.current_frame is None:
break
t0 = time()
self.process()
key = cv2.waitKey(1)
if key == ord('q'):
break
elif key == ord('s'):
self.ref_frame = self.current_frame.copy() # Update reference frame
self.ref_precomp = self.method.descriptor.detectAndCompute(self.ref_frame, None) #Cache ref features
self.current_frame = self.frame_grabber.get_last_frame()
#Measure avg. FPS
self.time_list.append(time()-t0)
if len(self.time_list) > self.max_cnt:
self.time_list.pop(0)
self.FPS = 1.0 / np.array(self.time_list).mean()
self.cleanup()
def cleanup(self):
self.frame_grabber.stop()
self.cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
demo = MatchingDemo(args = argparser())
demo.main_loop()