documents-restoration / inference.py
qubvel-hf's picture
qubvel-hf HF staff
Init project
c509e76
raw
history blame
12.3 kB
import os
import cv2
import utils
import argparse
import numpy as np
import torch
from utils import convert_state_dict
from models import restormer_arch
from data.preprocess.crop_merge_image import stride_integral
os.sys.path.append('./data/MBD/')
from data.MBD.infer import net1_net2_infer_single_im
def dewarp_prompt(img):
mask = net1_net2_infer_single_im(img,'data/MBD/checkpoint/mbd.pkl')
base_coord = utils.getBasecoord(256,256)/256
img[mask==0]=0
mask = cv2.resize(mask,(256,256))/255
return img,np.concatenate((base_coord,np.expand_dims(mask,-1)),-1)
def deshadow_prompt(img):
h,w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img,(1024,1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
bg_imgs = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
bg_imgs.append(bg_img)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(diff_img,None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
bg_imgs = cv2.merge(bg_imgs)
bg_imgs = cv2.resize(bg_imgs,(w,h))
# result = cv2.merge(result_planes)
result_norm = cv2.merge(result_norm_planes)
result_norm[result_norm==0]=1
shadow_map = np.clip(img.astype(float)/result_norm.astype(float)*255,0,255).astype(np.uint8)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map = cv2.cvtColor(shadow_map,cv2.COLOR_BGR2GRAY)
shadow_map = cv2.cvtColor(shadow_map,cv2.COLOR_GRAY2BGR)
# return shadow_map
return bg_imgs
def deblur_prompt(img):
x = cv2.Sobel(img,cv2.CV_16S,1,0)
y = cv2.Sobel(img,cv2.CV_16S,0,1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX,0.5,absY,0.5,0)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_BGR2GRAY)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_GRAY2BGR)
return high_frequency
def appearance_prompt(img):
h,w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img,(1024,1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(diff_img,None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
result_norm = cv2.merge(result_norm_planes)
result_norm = cv2.resize(result_norm,(w,h))
return result_norm
def binarization_promptv2(img):
result,thresh = utils.SauvolaModBinarization(img)
thresh = thresh.astype(np.uint8)
result[result>155]=255
result[result<=155]=0
x = cv2.Sobel(img,cv2.CV_16S,1,0)
y = cv2.Sobel(img,cv2.CV_16S,0,1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX,0.5,absY,0.5,0)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_BGR2GRAY)
return np.concatenate((np.expand_dims(thresh,-1),np.expand_dims(high_frequency,-1),np.expand_dims(result,-1)),-1)
def dewarping(model,im_path):
INPUT_SIZE=256
im_org = cv2.imread(im_path)
im_masked, prompt_org = dewarp_prompt(im_org.copy())
h,w = im_masked.shape[:2]
im_masked = im_masked.copy()
im_masked = cv2.resize(im_masked,(INPUT_SIZE,INPUT_SIZE))
im_masked = im_masked / 255.0
im_masked = torch.from_numpy(im_masked.transpose(2,0,1)).unsqueeze(0)
im_masked = im_masked.float().to(DEVICE)
prompt = torch.from_numpy(prompt_org.transpose(2,0,1)).unsqueeze(0)
prompt = prompt.float().to(DEVICE)
in_im = torch.cat((im_masked,prompt),dim=1)
# inference
base_coord = utils.getBasecoord(INPUT_SIZE,INPUT_SIZE)/INPUT_SIZE
model = model.float()
with torch.no_grad():
pred = model(in_im)
pred = pred[0][:2].permute(1,2,0).cpu().numpy()
pred = pred+base_coord
## smooth
for i in range(15):
pred = cv2.blur(pred,(3,3),borderType=cv2.BORDER_REPLICATE)
pred = cv2.resize(pred,(w,h))*(w,h)
pred = pred.astype(np.float32)
out_im = cv2.remap(im_org,pred[:,:,0],pred[:,:,1],cv2.INTER_LINEAR)
prompt_org = (prompt_org*255).astype(np.uint8)
prompt_org = cv2.resize(prompt_org,im_org.shape[:2][::-1])
return prompt_org[:,:,0],prompt_org[:,:,1],prompt_org[:,:,2],out_im
def appearance(model,im_path):
MAX_SIZE=1600
# obtain im and prompt
im_org = cv2.imread(im_path)
h,w = im_org.shape[:2]
prompt = appearance_prompt(im_org)
in_im = np.concatenate((im_org,prompt),-1)
# constrain the max resolution
if max(w,h) < MAX_SIZE:
in_im,padding_h,padding_w = stride_integral(in_im,8)
else:
in_im = cv2.resize(in_im,(MAX_SIZE,MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
# inference
in_im = in_im.half().to(DEVICE)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
if max(w,h) < MAX_SIZE:
out_im = pred[padding_h:,padding_w:]
else:
pred[pred==0] = 1
shadow_map = cv2.resize(im_org,(MAX_SIZE,MAX_SIZE)).astype(float)/pred.astype(float)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map[shadow_map==0]=0.00001
out_im = np.clip(im_org.astype(float)/shadow_map,0,255).astype(np.uint8)
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def deshadowing(model,im_path):
MAX_SIZE=1600
# obtain im and prompt
im_org = cv2.imread(im_path)
h,w = im_org.shape[:2]
prompt = deshadow_prompt(im_org)
in_im = np.concatenate((im_org,prompt),-1)
# constrain the max resolution
if max(w,h) < MAX_SIZE:
in_im,padding_h,padding_w = stride_integral(in_im,8)
else:
in_im = cv2.resize(in_im,(MAX_SIZE,MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
# inference
in_im = in_im.half().to(DEVICE)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
if max(w,h) < MAX_SIZE:
out_im = pred[padding_h:,padding_w:]
else:
pred[pred==0]=1
shadow_map = cv2.resize(im_org,(MAX_SIZE,MAX_SIZE)).astype(float)/pred.astype(float)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map[shadow_map==0]=0.00001
out_im = np.clip(im_org.astype(float)/shadow_map,0,255).astype(np.uint8)
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def deblurring(model,im_path):
# setup image
im_org = cv2.imread(im_path)
in_im,padding_h,padding_w = stride_integral(im_org,8)
prompt = deblur_prompt(in_im)
in_im = np.concatenate((in_im,prompt),-1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
in_im = in_im.half().to(DEVICE)
# inference
model.to(DEVICE)
model.eval()
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
out_im = pred[padding_h:,padding_w:]
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def binarization(model,im_path):
im_org = cv2.imread(im_path)
im,padding_h,padding_w = stride_integral(im_org,8)
prompt = binarization_promptv2(im)
h,w = im.shape[:2]
in_im = np.concatenate((im,prompt),-1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
in_im = in_im.to(DEVICE)
model = model.half()
in_im = in_im.half()
with torch.no_grad():
pred = model(in_im)
pred = pred[:,:2,:,:]
pred = torch.max(torch.softmax(pred,1),1)[1]
pred = pred[0].cpu().numpy()
pred = (pred*255).astype(np.uint8)
pred = cv2.resize(pred,(w,h))
out_im = pred[padding_h:,padding_w:]
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def get_args():
parser = argparse.ArgumentParser(description='Params')
parser.add_argument('--model_path', nargs='?', type=str, default='./checkpoints/docres.pkl',help='Path of the saved checkpoint')
parser.add_argument('--im_path', nargs='?', type=str, default='./distorted/',
help='Path of input document image')
parser.add_argument('--out_folder', nargs='?', type=str, default='./restorted/',
help='Folder of the output images')
parser.add_argument('--task', nargs='?', type=str, default='dewarping',
help='task that need to be executed')
parser.add_argument('--save_dtsprompt', nargs='?', type=int, default=0,
help='Width of the input image')
args = parser.parse_args()
possible_tasks = ['dewarping','deshadowing','appearance','deblurring','binarization','end2end']
assert args.task in possible_tasks, 'Unsupported task, task must be one of '+', '.join(possible_tasks)
return args
def model_init(args):
# prepare model
model = restormer_arch.Restormer(
inp_channels=6,
out_channels=3,
dim = 48,
num_blocks = [2,3,3,4],
num_refinement_blocks = 4,
heads = [1,2,4,8],
ffn_expansion_factor = 2.66,
bias = False,
LayerNorm_type = 'WithBias',
dual_pixel_task = True
)
if DEVICE.type == 'cpu':
state = convert_state_dict(torch.load(args.model_path, map_location='cpu')['model_state'])
else:
state = convert_state_dict(torch.load(args.model_path, map_location='cuda:0')['model_state'])
model.load_state_dict(state)
model.eval()
model = model.to(DEVICE)
return model
def inference_one_im(model,im_path,task):
if task=='dewarping':
prompt1,prompt2,prompt3,restorted = dewarping(model,im_path)
elif task=='deshadowing':
prompt1,prompt2,prompt3,restorted = deshadowing(model,im_path)
elif task=='appearance':
prompt1,prompt2,prompt3,restorted = appearance(model,im_path)
elif task=='deblurring':
prompt1,prompt2,prompt3,restorted = deblurring(model,im_path)
elif task=='binarization':
prompt1,prompt2,prompt3,restorted = binarization(model,im_path)
elif task=='end2end':
prompt1,prompt2,prompt3,restorted = dewarping(model,im_path)
cv2.imwrite('restorted/step1.jpg',restorted)
prompt1,prompt2,prompt3,restorted = deshadowing(model,'restorted/step1.jpg')
cv2.imwrite('restorted/step2.jpg',restorted)
prompt1,prompt2,prompt3,restorted = appearance(model,'restorted/step2.jpg')
# os.remove('restorted/step1.jpg')
# os.remove('restorted/step2.jpg')
return prompt1,prompt2,prompt3,restorted
if __name__ == '__main__':
## model init
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = get_args()
model = model_init(args)
## inference
prompt1,prompt2,prompt3,restorted = inference_one_im(model,args.im_path,args.task)
## results saving
im_name = os.path.split(args.im_path)[-1]
im_format = '.'+im_name.split('.')[-1]
save_path = os.path.join(args.out_folder,im_name.replace(im_format,'_'+args.task+im_format))
cv2.imwrite(save_path,restorted)
if args.save_dtsprompt:
cv2.imwrite(save_path.replace(im_format,'_prompt1'+im_format),prompt1)
cv2.imwrite(save_path.replace(im_format,'_prompt2'+im_format),prompt2)
cv2.imwrite(save_path.replace(im_format,'_prompt3'+im_format),prompt3)