Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
# importing required libraries | |
import numpy as np | |
import cv2 | |
from skimage.filters import threshold_sauvola | |
import glob | |
from tqdm import tqdm | |
import os | |
from skimage import io | |
def SauvolaModBinarization(image,n1=51,n2=51,k1=0.3,k2=0.3,default=True): | |
''' | |
Binarization using Sauvola's algorithm | |
@name : SauvolaModBinarization | |
parameters | |
@param image (numpy array of shape (3/1) of type np.uint8): color or gray scale image | |
optional parameters | |
@param n1 (int) : window size for running sauvola during the first pass | |
@param n2 (int): window size for running sauvola during the second pass | |
@param k1 (float): k value corresponding to sauvola during the first pass | |
@param k2 (float): k value corresponding to sauvola during the second pass | |
@param default (bool) : bollean variable to set the above parameter as default. | |
@param default is set to True : thus default values of the above optional parameters (n1,n2,k1,k2) are set to | |
n1 = 5 % of min(image height, image width) | |
n2 = 10 % of min(image height, image width) | |
k1 = 0.5 | |
k2 = 0.5 | |
Returns | |
@return A binary image of same size as @param image | |
@cite https://drive.google.com/file/d/1D3CyI5vtodPJeZaD2UV5wdcaIMtkBbdZ/view?usp=sharing | |
''' | |
if(default): | |
n1 = int(0.05*min(image.shape[0],image.shape[1])) | |
if (n1%2==0): | |
n1 = n1+1 | |
n2 = int(0.1*min(image.shape[0],image.shape[1])) | |
if (n2%2==0): | |
n2 = n2+1 | |
k1 = 0.5 | |
k2 = 0.5 | |
if(image.ndim==3): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
else: | |
gray = np.copy(image) | |
T1 = threshold_sauvola(gray, window_size=n1,k=k1) | |
max_val = np.amax(gray) | |
min_val = np.amin(gray) | |
C = np.copy(T1) | |
C = C.astype(np.float32) | |
C[gray > T1] = (gray[gray > T1] - T1[gray > T1])/(max_val - T1[gray > T1]) | |
C[gray <= T1] = 0 | |
C = C * 255.0 | |
new_in = np.copy(C.astype(np.uint8)) | |
T2 = threshold_sauvola(new_in, window_size=n2,k=k2) | |
binary = np.copy(gray) | |
binary[new_in <= T2] = 0 | |
binary[new_in > T2] = 255 | |
return binary,T2 | |
def dtprompt(img): | |
x = cv2.Sobel(img,cv2.CV_16S,1,0) | |
y = cv2.Sobel(img,cv2.CV_16S,0,1) | |
absX = cv2.convertScaleAbs(x) # 转回uint8 | |
absY = cv2.convertScaleAbs(y) | |
high_frequency = cv2.addWeighted(absX,0.5,absY,0.5,0) | |
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_BGR2GRAY) | |
return high_frequency | |
im_paths = glob.glob('imgs/*') | |
for im_path in tqdm(im_paths): | |
if '_bin.' in im_path: | |
continue | |
if '_thr.' in im_path: | |
continue | |
if '_gradient.' in im_path: | |
continue | |
im = cv2.imread(im_path) | |
result,thresh = SauvolaModBinarization(im) | |
gradient = dtprompt(im) | |
thresh = thresh.astype(np.uint8) | |
cv2.imwrite(im_path.replace('.','_bin.'),result) | |
cv2.imwrite(im_path.replace('.','_thr.'),thresh) | |
cv2.imwrite(im_path.replace('.','_gradient.'),gradient) |