documents-restoration / data /MBD /modify_stn_model /tps_spatial_transformer.py
qubvel-hf's picture
qubvel-hf HF staff
Init project
c509e76
raw
history blame
No virus
9.06 kB
from __future__ import absolute_import
import numpy as np
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
def grid_sample(input, grid, canvas = None):
output = F.grid_sample(input, grid)
if canvas is None:
return output
else:
input_mask = input.data.new(input.size()).fill_(1)
output_mask = F.grid_sample(input_mask, grid)
padded_output = output * output_mask + canvas * (1 - output_mask)
return padded_output
# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
def compute_partial_repr(input_points, control_points):
N = input_points.size(0)
M = control_points.size(0)
pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2)
# original implementation, very slow
# pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
pairwise_diff_square = pairwise_diff * pairwise_diff
pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1]
repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist)
# fix numerical error for 0 * log(0), substitute all nan with 0
mask = repr_matrix != repr_matrix
repr_matrix.masked_fill_(mask, 0)
return repr_matrix
# # output_ctrl_pts are specified, according to our task.
# def build_output_control_points(num_control_points, margins):
# margin_x, margin_y = margins
# margin_x, margin_y = 0,0
# num_ctrl_pts_per_side = num_control_points // 2
# ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
# ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
# ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
# ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
# ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
# # ctrl_pts_top = ctrl_pts_top[1:-1,:]
# # ctrl_pts_bottom = ctrl_pts_bottom[1:-1,:]
# output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
# output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr)
# return output_ctrl_pts
# output_ctrl_pts are specified, according to our task.
# def build_output_control_points(num_control_points, margins):
# margin_x, margin_y = margins
# # margin_x, margin_y = 0,0
# num_ctrl_pts_per_side = (num_control_points-4) // 4 +2
# ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
# ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
# ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
# ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
# ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
# ctrl_pts_x_left = np.ones(num_ctrl_pts_per_side) * margin_x
# ctrl_pts_x_right = np.ones(num_ctrl_pts_per_side) * (1.0-margin_x)
# ctrl_pts_left = np.stack([ctrl_pts_x_left[1:-1], ctrl_pts_x[1:-1]], axis=1)
# ctrl_pts_right = np.stack([ctrl_pts_x_right[1:-1], ctrl_pts_x[1:-1]], axis=1)
# output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom, ctrl_pts_left, ctrl_pts_right], axis=0)
# output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr)
# return output_ctrl_pts
def build_output_control_points(num_control_points, margins):
points = [0.25,0.5,0.75]
pts2 = [[0, 0],[1, 0], [0, 1],[1, 1]]
# pts22 = []
for ratio in points:
pts2.append([1*ratio,0])
for ratio in points:
pts2.append([1*ratio,1])
for ratio in points:
pts2.append([0,1*ratio])
for ratio in points:
pts2.append([1,1*ratio])
pts2 = np.float32(pts2)
margin_x, margin_y = margins
# margin_x, margin_y = 0,0
num_ctrl_pts_per_side = (num_control_points-4) // 4 +2
ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
ctrl_pts_x_left = np.ones(num_ctrl_pts_per_side) * margin_x
ctrl_pts_x_right = np.ones(num_ctrl_pts_per_side) * (1.0-margin_x)
ctrl_pts_left = np.stack([ctrl_pts_x_left[1:-1], ctrl_pts_x[1:-1]], axis=1)
ctrl_pts_right = np.stack([ctrl_pts_x_right[1:-1], ctrl_pts_x[1:-1]], axis=1)
output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom, ctrl_pts_left, ctrl_pts_right], axis=0)
# output_ctrl_pts_arr = np.asarray([[0,0],[1,0],[1,1],[0,1],
# [],[],[],[],
# [],[],[],[],
# [],[],[],[]])
output_ctrl_pts_arr = pts2
# print(output_ctrl_pts_arr.shape,'=================')
output_ctrl_pts = torch.FloatTensor(output_ctrl_pts_arr)
return output_ctrl_pts
# demo: ~/test/models/test_tps_transformation.py
class TPSSpatialTransformer(nn.Module):
def __init__(self, output_image_size=None, num_control_points=None, margins=None):
super(TPSSpatialTransformer, self).__init__()
self.output_image_size = output_image_size
self.num_control_points = num_control_points
self.margins = margins
self.target_height, self.target_width = output_image_size
target_control_points = build_output_control_points(num_control_points, margins)
N = num_control_points
# N = N - 4
# create padded kernel matrix
forward_kernel = torch.zeros(N + 3, N + 3)
target_control_partial_repr = compute_partial_repr(target_control_points, target_control_points)
forward_kernel[:N, :N].copy_(target_control_partial_repr)
forward_kernel[:N, -3].fill_(1)
forward_kernel[-3, :N].fill_(1)
forward_kernel[:N, -2:].copy_(target_control_points)
forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1))
# compute inverse matrix
# print(forward_kernel.shape)
inverse_kernel = torch.inverse(forward_kernel)
# create target cordinate matrix
HW = self.target_height * self.target_width
target_coordinate = list(itertools.product(range(self.target_height), range(self.target_width)))
target_coordinate = torch.Tensor(target_coordinate) # HW x 2
Y, X = target_coordinate.split(1, dim = 1)
Y = Y / (self.target_height - 1)
X = X / (self.target_width - 1)
target_coordinate = torch.cat([X, Y], dim = 1) # convert from (y, x) to (x, y)
target_coordinate_partial_repr = compute_partial_repr(target_coordinate, target_control_points)
target_coordinate_repr = torch.cat([
target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate
], dim = 1)
# register precomputed matrices
self.register_buffer('inverse_kernel', inverse_kernel)
self.register_buffer('padding_matrix', torch.zeros(3, 2))
self.register_buffer('target_coordinate_repr', target_coordinate_repr)
self.register_buffer('target_control_points', target_control_points)
def forward(self, input, source_control_points,direction='dewarp'):
if direction == 'dewarp':
assert source_control_points.ndimension() == 3
assert source_control_points.size(1) == self.num_control_points
assert source_control_points.size(2) == 2
batch_size = source_control_points.size(0)
Y = torch.cat([source_control_points, self.padding_matrix.expand(batch_size, 3, 2)], 1)
mapping_matrix = torch.matmul(self.inverse_kernel, Y)
source_coordinate = torch.matmul(self.target_coordinate_repr, mapping_matrix)
grid = source_coordinate.view(-1, self.target_height, self.target_width, 2)
grid = torch.clamp(grid, 0, 1) # the source_control_points may be out of [0, 1].
# the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
grid = 2.0 * grid - 1.0
output = grid_sample(input, grid, canvas=None)
return output, grid
# elif direction == 'warp':
# target_control_points = source_control_points.clone()
# source_control_points = (build_output_control_points(self.num_control_points, self.margins)).clone()
# source_control_points = source_control_points.unsqueeze(0)
# source_control_points = source_control_points.expand(target_control_points.size(0),self.num_control_points,2)
# assert source_control_points.ndimension() == 3
# assert source_control_points.size(1) == self.num_control_points
# assert source_control_points.size(2) == 2
# batch_size = source_control_points.size(0)
# Y = torch.cat([source_control_points.to('cuda'), self.padding_matrix.expand(batch_size, 3, 2)], 1)
# mapping_matrix = torch.matmul(self.inverse_kernel, Y)
# source_coordinate = torch.matmul(self.target_coordinate_repr, mapping_matrix)
# grid = source_coordinate.view(-1, self.target_height, self.target_width, 2)
# grid = torch.clamp(grid, 0, 1) # the source_control_points may be out of [0, 1].
# # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
# grid = 2.0 * grid - 1.0
# output_maps = grid_sample(input, grid, canvas=None)
# return output_maps, source_coordinate