qubvel-hf's picture
qubvel-hf HF staff
Init project
c509e76
raw
history blame
14.1 kB
from collections import OrderedDict
import os
import numpy as np
import torch
import torch.nn.functional as F
import os
from skimage.filters import threshold_sauvola
import cv2
def second2hours(seconds):
h = seconds//3600
seconds %= 3600
m = seconds//60
seconds %= 60
hms = '{:d} H : {:d} Min'.format(int(h),int(m))
return hms
def dict2string(loss_dict):
loss_string = ''
for key, value in loss_dict.items():
loss_string += key+' {:.4f}, '.format(value)
return loss_string[:-2]
def mkdir(dir):
if not os.path.exists(dir):
os.makedirs(dir)
def convert_state_dict(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return float(param_group['lr'])
def torch2cvimg(tensor,min=0,max=1):
'''
input:
tensor -> torch.tensor BxCxHxW C can be 1,3
return
im -> ndarray uint8 HxWxC
'''
im_list = []
for i in range(tensor.shape[0]):
im = tensor.detach().cpu().data.numpy()[i]
im = im.transpose(1,2,0)
im = np.clip(im,min,max)
im = ((im-min)/(max-min)*255).astype(np.uint8)
im_list.append(im)
return im_list
def cvimg2torch(img,min=0,max=1):
'''
input:
im -> ndarray uint8 HxWxC
return
tensor -> torch.tensor BxCxHxW
'''
img = img.astype(float) / 255.0
img = img.transpose(2, 0, 1) # NHWC -> NCHW
img = np.expand_dims(img, 0)
img = torch.from_numpy(img).float()
return img
def setup_seed(seed):
# np.random.seed(seed)
# random.seed(seed)
# torch.manual_seed(seed) #cpu
# torch.cuda.manual_seed_all(seed) #并行gpu
torch.backends.cudnn.deterministic = True #cpu/gpu结果一致
# torch.backends.cudnn.benchmark = False #训练集变化不大时使训练加速
def SauvolaModBinarization(image,n1=51,n2=51,k1=0.3,k2=0.3,default=True):
'''
Binarization using Sauvola's algorithm
@name : SauvolaModBinarization
parameters
@param image (numpy array of shape (3/1) of type np.uint8): color or gray scale image
optional parameters
@param n1 (int) : window size for running sauvola during the first pass
@param n2 (int): window size for running sauvola during the second pass
@param k1 (float): k value corresponding to sauvola during the first pass
@param k2 (float): k value corresponding to sauvola during the second pass
@param default (bool) : bollean variable to set the above parameter as default.
@param default is set to True : thus default values of the above optional parameters (n1,n2,k1,k2) are set to
n1 = 5 % of min(image height, image width)
n2 = 10 % of min(image height, image width)
k1 = 0.5
k2 = 0.5
Returns
@return A binary image of same size as @param image
@cite https://drive.google.com/file/d/1D3CyI5vtodPJeZaD2UV5wdcaIMtkBbdZ/view?usp=sharing
'''
if(default):
n1 = int(0.05*min(image.shape[0],image.shape[1]))
if (n1%2==0):
n1 = n1+1
n2 = int(0.1*min(image.shape[0],image.shape[1]))
if (n2%2==0):
n2 = n2+1
k1 = 0.5
k2 = 0.5
if(image.ndim==3):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = np.copy(image)
T1 = threshold_sauvola(gray, window_size=n1,k=k1)
max_val = np.amax(gray)
min_val = np.amin(gray)
C = np.copy(T1)
C = C.astype(np.float32)
C[gray > T1] = (gray[gray > T1] - T1[gray > T1])/(max_val - T1[gray > T1])
C[gray <= T1] = 0
C = C * 255.0
new_in = np.copy(C.astype(np.uint8))
T2 = threshold_sauvola(new_in, window_size=n2,k=k2)
binary = np.copy(gray)
binary[new_in <= T2] = 0
binary[new_in > T2] = 255
return binary,T2
def getBasecoord(h,w):
base_coord0 = np.tile(np.arange(h).reshape(h,1),(1,w)).astype(np.float32)
base_coord1 = np.tile(np.arange(w).reshape(1,w),(h,1)).astype(np.float32)
base_coord = np.concatenate((np.expand_dims(base_coord1,-1),np.expand_dims(base_coord0,-1)),-1)
return base_coord
import numpy as np
from scipy import ndimage as ndi
# lookup tables for bwmorph_thin
G123_LUT = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
0, 0, 0], dtype=np.bool_)
G123P_LUT = np.array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0], dtype=np.bool_)
def bwmorph(image, n_iter=None):
"""
Perform morphological thinning of a binary image
Parameters
----------
image : binary (M, N) ndarray
The image to be thinned.
n_iter : int, number of iterations, optional
Regardless of the value of this parameter, the thinned image
is returned immediately if an iteration produces no change.
If this parameter is specified it thus sets an upper bound on
the number of iterations performed.
Returns
-------
out : ndarray of bools
Thinned image.
See also
--------
skeletonize
Notes
-----
This algorithm [1]_ works by making multiple passes over the image,
removing pixels matching a set of criteria designed to thin
connected regions while preserving eight-connected components and
2 x 2 squares [2]_. In each of the two sub-iterations the algorithm
correlates the intermediate skeleton image with a neighborhood mask,
then looks up each neighborhood in a lookup table indicating whether
the central pixel should be deleted in that sub-iteration.
References
----------
.. [1] Z. Guo and R. W. Hall, "Parallel thinning with
two-subiteration algorithms," Comm. ACM, vol. 32, no. 3,
pp. 359-373, 1989.
.. [2] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning
Methodologies-A Comprehensive Survey," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol 14, No. 9,
September 1992, p. 879
Examples
--------
>>> square = np.zeros((7, 7), dtype=np.uint8)
>>> square[1:-1, 2:-2] = 1
>>> square[0,1] = 1
>>> square
array([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
>>> skel = bwmorph_thin(square)
>>> skel.astype(np.uint8)
array([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
"""
# check parameters
if n_iter is None:
n = -1
elif n_iter <= 0:
raise ValueError('n_iter must be > 0')
else:
n = n_iter
# check that we have a 2d binary image, and convert it
# to uint8
skel = np.array(image).astype(np.uint8)
if skel.ndim != 2:
raise ValueError('2D array required')
if not np.all(np.in1d(image.flat,(0,1))):
raise ValueError('Image contains values other than 0 and 1')
# neighborhood mask
mask = np.array([[ 8, 4, 2],
[16, 0, 1],
[32, 64,128]],dtype=np.uint8)
# iterate either 1) indefinitely or 2) up to iteration limit
while n != 0:
before = np.sum(skel) # count points before thinning
# for each subiteration
for lut in [G123_LUT, G123P_LUT]:
# correlate image with neighborhood mask
N = ndi.correlate(skel, mask, mode='constant')
# take deletion decision from this subiteration's LUT
D = np.take(lut, N)
# perform deletion
skel[D] = 0
after = np.sum(skel) # coint points after thinning
if before == after:
# iteration had no effect: finish
break
# count down to iteration limit (or endlessly negative)
n -= 1
return skel.astype(np.bool_)
"""
# here's how to make the LUTs
def nabe(n):
return np.array([n>>i&1 for i in range(0,9)]).astype(np.bool_)
def hood(n):
return np.take(nabe(n), np.array([[3, 2, 1],
[4, 8, 0],
[5, 6, 7]]))
def G1(n):
s = 0
bits = nabe(n)
for i in (0,2,4,6):
if not(bits[i]) and (bits[i+1] or bits[(i+2) % 8]):
s += 1
return s==1
g1_lut = np.array([G1(n) for n in range(256)])
def G2(n):
n1, n2 = 0, 0
bits = nabe(n)
for k in (1,3,5,7):
if bits[k] or bits[k-1]:
n1 += 1
if bits[k] or bits[(k+1) % 8]:
n2 += 1
return min(n1,n2) in [2,3]
g2_lut = np.array([G2(n) for n in range(256)])
g12_lut = g1_lut & g2_lut
def G3(n):
bits = nabe(n)
return not((bits[1] or bits[2] or not(bits[7])) and bits[0])
def G3p(n):
bits = nabe(n)
return not((bits[5] or bits[6] or not(bits[3])) and bits[4])
g3_lut = np.array([G3(n) for n in range(256)])
g3p_lut = np.array([G3p(n) for n in range(256)])
g123_lut = g12_lut & g3_lut
g123p_lut = g12_lut & g3p_lut
"""
"""
author : Peb Ruswono Aryan
metric for evaluating binarization algorithms
implemented :
* F-Measure
* pseudo F-Measure (as in H-DIBCO 2010 & 2012)
* Peak Signal to Noise Ratio (PSNR)
* Negative Rate Measure (NRM)
* Misclassification Penaltiy Measure (MPM)
* Distance Reciprocal Distortion (DRD)
usage:
python metric.py test-image.png ground-truth-image.png
"""
def drd_fn(im, im_gt):
height, width = im.shape
neg = np.zeros(im.shape)
neg[im_gt!=im] = 1
y, x = np.unravel_index(np.flatnonzero(neg), im.shape)
n = 2
m = n*2+1
W = np.zeros((m,m), dtype=np.uint8)
W[n,n] = 1.
W = cv2.distanceTransform(1-W, cv2.DIST_L2, cv2.DIST_MASK_PRECISE)
W[n,n] = 1.
W = 1./W
W[n,n] = 0.
W /= W.sum()
nubn = 0.
block_size = 8
for y1 in range(0, height, block_size):
for x1 in range(0, width, block_size):
y2 = min(y1+block_size-1,height-1)
x2 = min(x1+block_size-1,width-1)
block_dim = (x2-x1+1)*(y1-y1+1)
block = 1-im_gt[y1:y2, x1:x2]
block_sum = np.sum(block)
if block_sum>0 and block_sum<block_dim:
nubn += 1
drd_sum= 0.
tmp = np.zeros(W.shape)
for i in range(min(1,len(y))):
tmp[:,:] = 0
x1 = max(0, x[i]-n)
y1 = max(0, y[i]-n)
x2 = min(width-1, x[i]+n)
y2 = min(height-1, y[i]+n)
yy1 = y1-y[i]+n
yy2 = y2-y[i]+n
xx1 = x1-x[i]+n
xx2 = x2-x[i]+n
tmp[yy1:yy2+1,xx1:xx2+1] = np.abs(im[y[i],x[i]]-im_gt[y1:y2+1,x1:x2+1])
tmp *= W
drd_sum += np.sum(tmp)
return drd_sum/nubn
def bin_metric(im,im_gt):
height, width = im.shape
npixel = height*width
im[im>0] = 1
gt_mask = im_gt==0
im_gt[im_gt>0] = 1
sk = bwmorph(1-im_gt)
im_sk = np.ones(im_gt.shape)
im_sk[sk] = 0
kernel = np.ones((3,3), dtype=np.uint8)
im_dil = cv2.erode(im_gt, kernel)
im_gtb = im_gt-im_dil
im_gtbd = cv2.distanceTransform(1-im_gtb, cv2.DIST_L2, 3)
nd = im_gtbd.sum()
ptp = np.zeros(im_gt.shape)
ptp[(im==0) & (im_sk==0)] = 1
numptp = ptp.sum()
tp = np.zeros(im_gt.shape)
tp[(im==0) & (im_gt==0)] = 1
numtp = tp.sum()
tn = np.zeros(im_gt.shape)
tn[(im==1) & (im_gt==1)] = 1
numtn = tn.sum()
fp = np.zeros(im_gt.shape)
fp[(im==0) & (im_gt==1)] = 1
numfp = fp.sum()
fn = np.zeros(im_gt.shape)
fn[(im==1) & (im_gt==0)] = 1
numfn = fn.sum()
precision = numtp / (numtp + numfp)
recall = numtp / (numtp + numfn)
precall = numptp / np.sum(1-im_sk)
fmeasure = (2*recall*precision)/(recall+precision)
pfmeasure = (2*precall*precision)/(precall+precision)
mse = (numfp+numfn)/npixel
psnr = 10.*np.log10(1./mse)
nrfn = numfn / (numfn + numtp)
nrfp = numfp / (numfp + numtn)
nrm = (nrfn + nrfp)/2
im_dn = im_gtbd.copy()
im_dn[fn==0] = 0
dn = np.sum(im_dn)
mpfn = dn / nd
im_dp = im_gtbd.copy()
im_dp[fp==0] = 0
dp = np.sum(im_dp)
mpfp = dp / nd
mpm = (mpfp + mpfn) / 2
drd = drd_fn(im, im_gt)
return fmeasure, pfmeasure,psnr,nrm, mpm,drd
# print("F-measure\t: {0}\npF-measure\t: {1}\nPSNR\t\t: {2}\nNRM\t\t: {3}\nMPM\t\t: {4}\nDRD\t\t: {5}".format(fmeasure, pfmeasure, psnr, nrm, mpm, drd))