Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import numpy as np | |
import MBD_utils | |
import torch | |
import torch.nn.functional as F | |
def mask_base_dewarper(image,mask): | |
''' | |
input: | |
image -> ndarray HxWx3 uint8 | |
mask -> ndarray HxW uint8 | |
return | |
dewarped -> ndarray HxWx3 uint8 | |
grid (optional) -> ndarray HxWx2 -1~1 | |
''' | |
## get contours | |
# _, contours, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) ## cv2.__version__ == 3.x | |
contours,hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,method=cv2.CHAIN_APPROX_SIMPLE) ## cv2.__version__ == 4.x | |
## get biggest contours and four corners based on Douglas-Peucker algorithm | |
four_corners, maxArea, contour= MBD_utils.DP_algorithm(contours) | |
four_corners = MBD_utils.reorder(four_corners) | |
## reserve biggest contours and remove other noisy contours | |
new_mask = np.zeros_like(mask) | |
new_mask = cv2.drawContours(new_mask,[contour],-1,255,cv2.FILLED) | |
## obtain middle points | |
# ratios = [0.25,0.5,0.75] # ratios = [0.125,0.25,0.375,0.5,0.625,0.75,0.875] | |
ratios = [0.25,0.5,0.75] | |
# ratios = [0.0625,0.125,0.1875,0.25,0.3125,0.375,0.4475,0.5,0.5625,0.625,0.06875,0.75,0.8125,0.875,0.9375] | |
middle = MBD_utils.findMiddle(corners=four_corners,mask=new_mask,points=ratios) | |
## all points | |
source_points = np.concatenate((four_corners,middle),axis=0) ## all_point = four_corners(topleft,topright,bottom)+top+bottom+left+right | |
## target points | |
h,w = image.shape[:2] | |
padding = 0 | |
target_points = [[padding, padding],[w-padding, padding], [padding, h-padding],[w-padding, h-padding]] | |
for ratio in ratios: | |
target_points.append([int((w-2*padding)*ratio)+padding,padding]) | |
for ratio in ratios: | |
target_points.append([int((w-2*padding)*ratio)+padding,h-padding]) | |
for ratio in ratios: | |
target_points.append([padding,int((h-2*padding)*ratio)+padding]) | |
for ratio in ratios: | |
target_points.append([w-padding,int((h-2*padding)*ratio)+padding]) | |
## dewarp base on cv2 | |
# pts1 = np.float32(source_points) | |
# pts2 = np.float32(target_points) | |
# tps = cv2.createThinPlateSplineShapeTransformer() | |
# matches = [] | |
# N = pts1.shape[0] | |
# for i in range(0,N): | |
# matches.append(cv2.DMatch(i,i,0)) | |
# pts1 = pts1.reshape(1,-1,2) | |
# pts2 = pts2.reshape(1,-1,2) | |
# tps.estimateTransformation(pts2,pts1,matches) | |
# dewarped = tps.warpImage(image) | |
## dewarp base on generated grid | |
source_points = source_points.reshape(-1,2)/np.array([image.shape[:2][::-1]]).reshape(1,2) | |
source_points = torch.from_numpy(source_points).float().cuda() | |
source_points = source_points.unsqueeze(0) | |
source_points = (source_points-0.5)*2 | |
target_points = np.asarray(target_points).reshape(-1,2)/np.array([image.shape[:2][::-1]]).reshape(1,2) | |
target_points = torch.from_numpy(target_points).float() | |
target_points = (target_points-0.5)*2 | |
model = MBD_utils.TPSGridGen(target_height=256,target_width=256,target_control_points=target_points) | |
model = model.cuda() | |
grid = model(source_points).view(-1,256,256,2).permute(0,3,1,2) | |
grid = F.interpolate(grid,(h,w),mode='bilinear').permute(0,2,3,1) | |
dewarped = MBD_utils.torch2cvimg(F.grid_sample(MBD_utils.cvimg2torch(image).cuda(),grid))[0] | |
return dewarped,grid[0].cpu().numpy() | |
def mask_base_cropper(image,mask): | |
''' | |
input: | |
image -> ndarray HxWx3 uint8 | |
mask -> ndarray HxW uint8 | |
return | |
dewarped -> ndarray HxWx3 uint8 | |
grid (optional) -> ndarray HxWx2 -1~1 | |
''' | |
## get contours | |
_, contours, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) ## cv2.__version__ == 3.x | |
# contours,hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,method=cv2.CHAIN_APPROX_SIMPLE) ## cv2.__version__ == 4.x | |
## get biggest contours and four corners based on Douglas-Peucker algorithm | |
four_corners, maxArea, contour= MBD_utils.DP_algorithm(contours) | |
four_corners = MBD_utils.reorder(four_corners) | |
## reserve biggest contours and remove other noisy contours | |
new_mask = np.zeros_like(mask) | |
new_mask = cv2.drawContours(new_mask,[contour],-1,255,cv2.FILLED) | |
## 最小外接矩形 | |
rect = cv2.minAreaRect(contour) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度) | |
box = cv2.boxPoints(rect) # cv2.boxPoints(rect) for OpenCV 3.x 获取最小外接矩形的4个顶点坐标 | |
box = np.int0(box) | |
box = box.reshape((4,1,2)) | |