Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose | |
from .dinov2 import DINOv2 | |
from .util.blocks import FeatureFusionBlock, _make_scratch | |
from .util.transform import Resize, NormalizeImage, PrepareForNet | |
def _make_fusion_block(features, use_bn, size=None): | |
return FeatureFusionBlock( | |
features, | |
nn.ReLU(False), | |
deconv=False, | |
bn=use_bn, | |
expand=False, | |
align_corners=True, | |
size=size, | |
) | |
class ConvBlock(nn.Module): | |
def __init__(self, in_feature, out_feature): | |
super().__init__() | |
self.conv_block = nn.Sequential( | |
nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(out_feature), | |
nn.ReLU(True) | |
) | |
def forward(self, x): | |
return self.conv_block(x) | |
class DPTHead(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
features=256, | |
use_bn=False, | |
out_channels=[256, 512, 1024, 1024], | |
use_clstoken=False | |
): | |
super(DPTHead, self).__init__() | |
self.use_clstoken = use_clstoken | |
self.projects = nn.ModuleList([ | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channel, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) for out_channel in out_channels | |
]) | |
self.resize_layers = nn.ModuleList([ | |
nn.ConvTranspose2d( | |
in_channels=out_channels[0], | |
out_channels=out_channels[0], | |
kernel_size=4, | |
stride=4, | |
padding=0), | |
nn.ConvTranspose2d( | |
in_channels=out_channels[1], | |
out_channels=out_channels[1], | |
kernel_size=2, | |
stride=2, | |
padding=0), | |
nn.Identity(), | |
nn.Conv2d( | |
in_channels=out_channels[3], | |
out_channels=out_channels[3], | |
kernel_size=3, | |
stride=2, | |
padding=1) | |
]) | |
if use_clstoken: | |
self.readout_projects = nn.ModuleList() | |
for _ in range(len(self.projects)): | |
self.readout_projects.append( | |
nn.Sequential( | |
nn.Linear(2 * in_channels, in_channels), | |
nn.GELU())) | |
self.scratch = _make_scratch( | |
out_channels, | |
features, | |
groups=1, | |
expand=False, | |
) | |
self.scratch.stem_transpose = None | |
self.scratch.refinenet1 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet2 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet3 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet4 = _make_fusion_block(features, use_bn) | |
head_features_1 = features | |
head_features_2 = 32 | |
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) | |
self.scratch.output_conv2 = nn.Sequential( | |
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(True), | |
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), | |
nn.ReLU(True), | |
nn.Identity(), | |
) | |
def forward(self, out_features, patch_h, patch_w): | |
out = [] | |
for i, x in enumerate(out_features): | |
if self.use_clstoken: | |
x, cls_token = x[0], x[1] | |
readout = cls_token.unsqueeze(1).expand_as(x) | |
x = self.readout_projects[i](torch.cat((x, readout), -1)) | |
else: | |
x = x[0] | |
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) | |
x = self.projects[i](x) | |
x = self.resize_layers[i](x) | |
out.append(x) | |
layer_1, layer_2, layer_3, layer_4 = out | |
layer_1_rn = self.scratch.layer1_rn(layer_1) | |
layer_2_rn = self.scratch.layer2_rn(layer_2) | |
layer_3_rn = self.scratch.layer3_rn(layer_3) | |
layer_4_rn = self.scratch.layer4_rn(layer_4) | |
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) | |
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) | |
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) | |
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) | |
out = self.scratch.output_conv1(path_1) | |
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) | |
out = self.scratch.output_conv2(out) | |
return out | |
class DepthAnythingV2(nn.Module): | |
def __init__( | |
self, | |
encoder='vitl', | |
features=256, | |
out_channels=[256, 512, 1024, 1024], | |
use_bn=False, | |
use_clstoken=False | |
): | |
super(DepthAnythingV2, self).__init__() | |
self.intermediate_layer_idx = { | |
'vits': [2, 5, 8, 11], | |
'vitb': [2, 5, 8, 11], | |
'vitl': [4, 11, 17, 23], | |
'vitg': [9, 19, 29, 39] | |
} | |
self.encoder = encoder | |
self.pretrained = DINOv2(model_name=encoder) | |
self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken) | |
def forward(self, x): | |
patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14 | |
features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True) | |
depth = self.depth_head(features, patch_h, patch_w) | |
depth = F.relu(depth) | |
return depth.squeeze(1) | |
def infer_image(self, raw_image, input_size=518): | |
image, (h, w) = self.image2tensor(raw_image, input_size) | |
depth = self.forward(image) | |
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0] | |
return depth | |
def image2tensor(self, raw_image, input_size=518): | |
transform = Compose([ | |
Resize( | |
width=input_size, | |
height=input_size, | |
resize_target=False, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=14, | |
resize_method='lower_bound', | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
]) | |
h, w = raw_image.shape[:2] | |
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0 | |
image = transform({'image': image})['image'] | |
image = torch.from_numpy(image).unsqueeze(0) | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' | |
image = image.to(DEVICE) | |
return image, (h, w) | |