bykang's picture
Update app.py
02d2686 verified
raw
history blame
3.59 kB
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from depth_anything_v2.dpt import DepthAnythingV2
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Gaint',
}
encoder = 'vitg'
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{encoder2name[encoder]}", filename=f"model.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
title = "# Depth Anything V2"
description = """Official demo for **Depth Anything V2**.
Please refer to our [paper](), [project page](https://depth-anything-v2.github.io), or [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
@spaces.GPU
def predict_depth(image):
return model.infer_image(image).cpu()
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
submit = gr.Button(value="Compute Depth")
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
def on_submit(image):
original_image = image.copy()
h, w = image.shape[:2]
depth = predict_depth(image[:, :, ::-1])
raw_depth = Image.fromarray(depth.numpy().astype('uint16'))
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp_raw_depth.name)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.numpy().astype(np.uint8)
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
gray_depth = Image.fromarray(depth)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
gray_depth.save(tmp_gray_depth.name)
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
example_files = os.listdir('examples')
example_files.sort()
example_files = [os.path.join('examples', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
if __name__ == '__main__':
demo.queue().launch(share=True)