Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import CLIPModel, CLIPProcessor | |
from PIL import Image | |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub | |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned" | |
print("Initializing the application...") | |
try: | |
print("Loading the model from Hugging Face Model Hub...") | |
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True) | |
processor = CLIPProcessor.from_pretrained(model_name) | |
print("Model and processor loaded successfully.") | |
except Exception as e: | |
print(f"Error loading the model or processor: {e}") | |
raise RuntimeError(f"Failed to load model: {e}") | |
# Step 2: Define the Inference Function | |
def classify_image(image): | |
""" | |
Classify an image as 'safe' or 'unsafe' and return probabilities. | |
""" | |
try: | |
if image is None: | |
raise ValueError("No image provided. Please upload a valid image.") | |
# Define categories | |
unsafe_categories = ["hate", "sexual", "violent", "self-harm"] | |
safe_categories = ["safe", "retail product"] | |
categories = safe_categories + unsafe_categories | |
# Process the image | |
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True) | |
# Run inference | |
outputs = model(**inputs) | |
# Extract logits and apply softmax | |
logits_per_image = outputs.logits_per_image # Shape: [1, 2] | |
probs = logits_per_image.softmax(dim=1).detach().numpy() # Convert logits to probabilities | |
# Extract probabilities for each category | |
safe_prob = sum(value if categories[i] in safe_categories else 0.0 for i, value in enumerate(probs[0])) | |
unsafe_prob = sum(value if categories[i] in unsafe_categories else 0.0 for i, value in enumerate(probs[0])) | |
#debug | |
for i, value in enumerate(probs[0]): | |
print(categories[i], value) | |
# Return raw probabilities | |
return { | |
"safe": safe_prob, # Leave as a fraction (e.g., 0.92) | |
"unsafe": unsafe_prob # Leave as a fraction (e.g., 0.08) | |
} | |
except Exception as e: | |
return {"Error": str(e)} | |
# Step 3: Set Up Gradio Interface | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=2), # Use gr.Label to display probabilities with a bar-style visualization | |
title="Content Safety Classification", | |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.", | |
) | |
# Step 4: Launch Gradio Interface | |
if __name__ == "__main__": | |
print("Launching the Gradio interface...") | |
iface.launch() | |
# Save the fine-tuned model | |
model.save_pretrained("fine-tuned-model") | |
processor.save_pretrained("fine-tuned-model") | |
print("Model and processor saved locally in the 'fine-tuned-model' directory.") | |