Spaces:
Running
on
Zero
Running
on
Zero
upload files
Browse files- app.py +0 -3
- finetune.py +282 -0
- requirements.txt +5 -1
app.py
CHANGED
@@ -4,7 +4,6 @@ import numpy as np
|
|
4 |
import os
|
5 |
import requests
|
6 |
import spaces
|
7 |
-
import timm
|
8 |
import torch
|
9 |
import torchvision.transforms as T
|
10 |
import types
|
@@ -13,8 +12,6 @@ import torch.nn.functional as F
|
|
13 |
|
14 |
from PIL import Image
|
15 |
from tqdm import tqdm
|
16 |
-
from sklearn.decomposition import PCA
|
17 |
-
from torch_kmeans import KMeans, CosineSimilarity
|
18 |
|
19 |
cmap = plt.get_cmap("tab20")
|
20 |
imagenet_transform = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
|
|
|
4 |
import os
|
5 |
import requests
|
6 |
import spaces
|
|
|
7 |
import torch
|
8 |
import torchvision.transforms as T
|
9 |
import types
|
|
|
12 |
|
13 |
from PIL import Image
|
14 |
from tqdm import tqdm
|
|
|
|
|
15 |
|
16 |
cmap = plt.get_cmap("tab20")
|
17 |
imagenet_transform = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
|
finetune.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import math
|
3 |
+
import pickle
|
4 |
+
import sys
|
5 |
+
import time
|
6 |
+
from datetime import datetime
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Any, Dict, Mapping
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import matplotlib.cm as cm
|
12 |
+
import numpy as np
|
13 |
+
import pytorch_lightning as pl
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
import torchvision.transforms as T
|
18 |
+
import tqdm
|
19 |
+
from PIL import Image
|
20 |
+
from pytorch_lightning.loggers import TensorBoardLogger
|
21 |
+
from sklearn.decomposition import PCA
|
22 |
+
from torch.nn.parameter import Parameter
|
23 |
+
from torch.utils.data import ConcatDataset, DataLoader, Subset
|
24 |
+
from torchvision.transforms import functional
|
25 |
+
|
26 |
+
|
27 |
+
class _LoRA_qkv(nn.Module):
|
28 |
+
"""
|
29 |
+
In Dinov2 it is implemented as
|
30 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
31 |
+
B, N, C = x.shape
|
32 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
33 |
+
q, k, v = qkv.unbind(0)
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
qkv: nn.Module,
|
39 |
+
linear_a_q: nn.Module,
|
40 |
+
linear_b_q: nn.Module,
|
41 |
+
linear_a_v: nn.Module,
|
42 |
+
linear_b_v: nn.Module,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.qkv = qkv
|
46 |
+
self.linear_a_q = linear_a_q
|
47 |
+
self.linear_b_q = linear_b_q
|
48 |
+
self.linear_a_v = linear_a_v
|
49 |
+
self.linear_b_v = linear_b_v
|
50 |
+
self.dim = qkv.in_features
|
51 |
+
self.w_identity = torch.eye(qkv.in_features)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
qkv = self.qkv(x) # B,N,3*org_C
|
55 |
+
new_q = self.linear_b_q(self.linear_a_q(x))
|
56 |
+
new_v = self.linear_b_v(self.linear_a_v(x))
|
57 |
+
|
58 |
+
qkv[:, :, : self.dim] += new_q
|
59 |
+
qkv[:, :, -self.dim:] += new_v
|
60 |
+
return qkv
|
61 |
+
|
62 |
+
|
63 |
+
def sigmoid(tensor, temp=1.0):
|
64 |
+
""" temperature controlled sigmoid
|
65 |
+
|
66 |
+
takes as input a torch tensor (tensor) and passes it through a sigmoid, controlled by temperature: temp
|
67 |
+
"""
|
68 |
+
exponent = -tensor / temp
|
69 |
+
# clamp the input tensor for stability
|
70 |
+
exponent = torch.clamp(exponent, min=-50, max=50)
|
71 |
+
y = 1.0 / (1.0 + torch.exp(exponent))
|
72 |
+
return y
|
73 |
+
|
74 |
+
|
75 |
+
def interpolate_features(descriptors, pts, h, w, normalize=True, patch_size=14, stride=14):
|
76 |
+
last_coord_h = ( (h - patch_size) // stride ) * stride + (patch_size / 2)
|
77 |
+
last_coord_w = ( (w - patch_size) // stride ) * stride + (patch_size / 2)
|
78 |
+
ah = 2 / (last_coord_h - (patch_size / 2))
|
79 |
+
aw = 2 / (last_coord_w - (patch_size / 2))
|
80 |
+
bh = 1 - last_coord_h * 2 / ( last_coord_h - ( patch_size / 2 ))
|
81 |
+
bw = 1 - last_coord_w * 2 / ( last_coord_w - ( patch_size / 2 ))
|
82 |
+
|
83 |
+
a = torch.tensor([[aw, ah]]).to(pts).float()
|
84 |
+
b = torch.tensor([[bw, bh]]).to(pts).float()
|
85 |
+
keypoints = a * pts + b
|
86 |
+
|
87 |
+
# Expand dimensions for grid sampling
|
88 |
+
keypoints = keypoints.unsqueeze(-3) # Shape becomes [batch_size, 1, num_keypoints, 2]
|
89 |
+
|
90 |
+
# Interpolate using bilinear sampling
|
91 |
+
interpolated_features = F.grid_sample(descriptors, keypoints, align_corners=True, padding_mode='border')
|
92 |
+
|
93 |
+
# interpolated_features will have shape [batch_size, channels, 1, num_keypoints]
|
94 |
+
interpolated_features = interpolated_features.squeeze(-2)
|
95 |
+
|
96 |
+
return F.normalize(interpolated_features, dim=1) if normalize else interpolated_features
|
97 |
+
|
98 |
+
|
99 |
+
class FinetuneDINO(pl.LightningModule):
|
100 |
+
def __init__(self, r, backbone_size, reg=False, datasets=None):
|
101 |
+
super().__init__()
|
102 |
+
assert r > 0
|
103 |
+
self.backbone_size = backbone_size
|
104 |
+
self.backbone_archs = {
|
105 |
+
"small": "vits14",
|
106 |
+
"base": "vitb14",
|
107 |
+
"large": "vitl14",
|
108 |
+
"giant": "vitg14",
|
109 |
+
}
|
110 |
+
self.embedding_dims = {
|
111 |
+
"small": 384,
|
112 |
+
"base": 768,
|
113 |
+
"large": 1024,
|
114 |
+
"giant": 1536,
|
115 |
+
}
|
116 |
+
self.backbone_arch = self.backbone_archs[self.backbone_size]
|
117 |
+
if reg:
|
118 |
+
self.backbone_arch = f"{self.backbone_arch}_reg"
|
119 |
+
self.embedding_dim = self.embedding_dims[self.backbone_size]
|
120 |
+
|
121 |
+
self.backbone_name = f"dinov2_{self.backbone_arch}"
|
122 |
+
dinov2 = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=self.backbone_name)
|
123 |
+
self.datasets = datasets
|
124 |
+
|
125 |
+
self.lora_layer = list(range(len(dinov2.blocks))) # Only apply lora to the image encoder by default
|
126 |
+
# create for storage, then we can init them or load weights
|
127 |
+
self.w_As = [] # These are linear layers
|
128 |
+
self.w_Bs = []
|
129 |
+
# freeze first
|
130 |
+
for param in dinov2.parameters():
|
131 |
+
param.requires_grad = False
|
132 |
+
|
133 |
+
# finetune the last 4 blocks
|
134 |
+
for t_layer_i, blk in enumerate(dinov2.blocks[-4:]):
|
135 |
+
# If we only want few lora layer instead of all
|
136 |
+
if t_layer_i not in self.lora_layer:
|
137 |
+
continue
|
138 |
+
w_qkv_linear = blk.attn.qkv
|
139 |
+
self.dim = w_qkv_linear.in_features
|
140 |
+
w_a_linear_q = nn.Linear(self.dim, r, bias=False)
|
141 |
+
w_b_linear_q = nn.Linear(r, self.dim, bias=False)
|
142 |
+
w_a_linear_v = nn.Linear(self.dim, r, bias=False)
|
143 |
+
w_b_linear_v = nn.Linear(r, self.dim, bias=False)
|
144 |
+
self.w_As.append(w_a_linear_q)
|
145 |
+
self.w_Bs.append(w_b_linear_q)
|
146 |
+
self.w_As.append(w_a_linear_v)
|
147 |
+
self.w_Bs.append(w_b_linear_v)
|
148 |
+
blk.attn.qkv = _LoRA_qkv(
|
149 |
+
w_qkv_linear,
|
150 |
+
w_a_linear_q,
|
151 |
+
w_b_linear_q,
|
152 |
+
w_a_linear_v,
|
153 |
+
w_b_linear_v,
|
154 |
+
)
|
155 |
+
self.reset_parameters()
|
156 |
+
|
157 |
+
self.dinov2 = dinov2
|
158 |
+
self.downsample_factor = 8
|
159 |
+
|
160 |
+
self.refine_conv = nn.Conv2d(self.embedding_dim, self.embedding_dim, kernel_size=3, stride=1, padding=1)
|
161 |
+
|
162 |
+
self.thresh3d_pos = 5e-3
|
163 |
+
self.thres3d_neg = 0.1
|
164 |
+
|
165 |
+
self.patch_size = 14
|
166 |
+
self.target_res = 640
|
167 |
+
|
168 |
+
self.input_transform = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
|
169 |
+
|
170 |
+
def reset_parameters(self) -> None:
|
171 |
+
for w_A in self.w_As:
|
172 |
+
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
|
173 |
+
for w_B in self.w_Bs:
|
174 |
+
nn.init.zeros_(w_B.weight)
|
175 |
+
|
176 |
+
def on_save_checkpoint(self, checkpoint: Dict[str, Any]):
|
177 |
+
num_layer = len(self.w_As) # actually, it is half
|
178 |
+
a_tensors = {f"w_a_{i:03d}": self.w_As[i].weight for i in range(num_layer)}
|
179 |
+
b_tensors = {f"w_b_{i:03d}": self.w_Bs[i].weight for i in range(num_layer)}
|
180 |
+
|
181 |
+
checkpoint['state_dict'] = {
|
182 |
+
'refine_conv': self.refine_conv.state_dict(),
|
183 |
+
}
|
184 |
+
checkpoint.update(a_tensors)
|
185 |
+
checkpoint.update(b_tensors)
|
186 |
+
|
187 |
+
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
188 |
+
pass
|
189 |
+
|
190 |
+
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
191 |
+
# print(checkpoint.keys())
|
192 |
+
self.refine_conv.load_state_dict(checkpoint['state_dict']['refine_conv'])
|
193 |
+
|
194 |
+
for i, w_A_linear in enumerate(self.w_As):
|
195 |
+
saved_key = f"w_a_{i:03d}"
|
196 |
+
saved_tensor = checkpoint[saved_key]
|
197 |
+
w_A_linear.weight = Parameter(saved_tensor)
|
198 |
+
|
199 |
+
for i, w_B_linear in enumerate(self.w_Bs):
|
200 |
+
saved_key = f"w_b_{i:03d}"
|
201 |
+
saved_tensor = checkpoint[saved_key]
|
202 |
+
w_B_linear.weight = Parameter(saved_tensor)
|
203 |
+
self.loaded = True
|
204 |
+
|
205 |
+
def get_nearest(self, query, database):
|
206 |
+
dist = torch.cdist(query, database)
|
207 |
+
min_dist, min_idx = torch.min(dist, -1)
|
208 |
+
return min_dist, min_idx
|
209 |
+
|
210 |
+
def get_feature(self, rgbs, pts, normalize=True):
|
211 |
+
tgt_size = (int(rgbs.shape[-2] * self.target_res / rgbs.shape[-1]), self.target_res)
|
212 |
+
if rgbs.shape[-2] > rgbs.shape[-1]:
|
213 |
+
tgt_size = (self.target_res, int(rgbs.shape[-1] * self.target_res / rgbs.shape[-2]))
|
214 |
+
|
215 |
+
patch_h, patch_w = tgt_size[0] // self.downsample_factor, tgt_size[1] // self.downsample_factor
|
216 |
+
rgb_resized = functional.resize(rgbs, (patch_h * self.patch_size, patch_w * self.patch_size))
|
217 |
+
|
218 |
+
resize_factor = [(patch_w * self.patch_size) / rgbs.shape[-1], (patch_h * self.patch_size) / rgbs.shape[-2]]
|
219 |
+
|
220 |
+
pts = pts * torch.tensor(resize_factor).to(pts.device)
|
221 |
+
|
222 |
+
result = self.dinov2.forward_features(self.input_transform(rgb_resized))
|
223 |
+
|
224 |
+
feature = result['x_norm_patchtokens'].reshape(rgb_resized.shape[0], patch_h, patch_w, -1).permute(0, 3, 1, 2)
|
225 |
+
feature = self.refine_conv(feature)
|
226 |
+
|
227 |
+
feature = interpolate_features(feature, pts, h=patch_h * 14, w=patch_w * 14, normalize=False).permute(0, 2, 1)
|
228 |
+
if normalize:
|
229 |
+
feature = F.normalize(feature, p=2, dim=-1)
|
230 |
+
return feature
|
231 |
+
|
232 |
+
def get_feature_wo_kp(self, rgbs, normalize=True):
|
233 |
+
tgt_size = (int(rgbs.shape[-2] * self.target_res / rgbs.shape[-1]), self.target_res)
|
234 |
+
if rgbs.shape[-2] > rgbs.shape[-1]:
|
235 |
+
tgt_size = (self.target_res, int(rgbs.shape[-1] * self.target_res / rgbs.shape[-2]))
|
236 |
+
|
237 |
+
patch_h, patch_w = tgt_size[0] // self.downsample_factor, tgt_size[1] // self.downsample_factor
|
238 |
+
rgb_resized = functional.resize(rgbs, (patch_h * self.patch_size, patch_w * self.patch_size))
|
239 |
+
|
240 |
+
result = self.dinov2.forward_features(self.input_transform(rgb_resized))
|
241 |
+
feature = result['x_norm_patchtokens'].reshape(rgbs.shape[0], patch_h, patch_w, -1).permute(0, 3, 1, 2)
|
242 |
+
feature = self.refine_conv(feature)
|
243 |
+
feature = functional.resize(feature, (rgbs.shape[-2], rgbs.shape[-1])).permute(0, 2, 3, 1)
|
244 |
+
if normalize:
|
245 |
+
feature = F.normalize(feature, p=2, dim=-1)
|
246 |
+
return feature
|
247 |
+
|
248 |
+
def training_step(self, batch, batch_idx):
|
249 |
+
# print(batch['obj_name_1'])
|
250 |
+
rgb_1, pts2d_1, pts3d_1 = batch['rgb_1'], batch['pts2d_1'], batch['pts3d_1']
|
251 |
+
rgb_2, pts2d_2, pts3d_2 = batch['rgb_2'], batch['pts2d_2'], batch['pts3d_2']
|
252 |
+
|
253 |
+
desc_1 = self.get_feature(rgb_1, pts2d_1, normalize=True)
|
254 |
+
desc_2 = self.get_feature(rgb_2, pts2d_2, normalize=True)
|
255 |
+
|
256 |
+
kp3d_dist = torch.cdist(pts3d_1, pts3d_2) # B x S x T
|
257 |
+
sim = torch.bmm(desc_1, desc_2.transpose(-1, -2)) # B x S x T
|
258 |
+
|
259 |
+
pos_idxs = torch.nonzero(kp3d_dist < self.thresh3d_pos, as_tuple=False)
|
260 |
+
pos_sim = sim[pos_idxs[:, 0], pos_idxs[:, 1], pos_idxs[:, 2]]
|
261 |
+
rpos = sigmoid(pos_sim - 1., temp=0.01) + 1 # si = 1 # pos
|
262 |
+
neg_mask = kp3d_dist[pos_idxs[:, 0], pos_idxs[:, 1]] > self.thres3d_neg # pos x T
|
263 |
+
rall = rpos + torch.sum(sigmoid(sim[pos_idxs[:, 0], pos_idxs[:, 1]] - 1., temp=0.01) * neg_mask.float(), -1) # pos
|
264 |
+
ap1 = rpos / rall
|
265 |
+
|
266 |
+
# change teh order
|
267 |
+
rpos = sigmoid(1. - pos_sim, temp=0.01) + 1 # si = 1 # pos
|
268 |
+
neg_mask = kp3d_dist[pos_idxs[:, 0], pos_idxs[:, 1]] > self.thres3d_neg # pos x T
|
269 |
+
rall = rpos + torch.sum(sigmoid(sim[pos_idxs[:, 0], pos_idxs[:, 1]] - pos_sim[:, None].repeat(1, sim.shape[-1]), temp=0.01) * neg_mask.float(), -1) # pos
|
270 |
+
ap2 = rpos / rall
|
271 |
+
|
272 |
+
ap = (ap1 + ap2) / 2
|
273 |
+
|
274 |
+
loss = torch.mean(1. - ap)
|
275 |
+
|
276 |
+
self.log('loss', loss, prog_bar=True)
|
277 |
+
return loss
|
278 |
+
|
279 |
+
def configure_optimizers(self):
|
280 |
+
return torch.optim.AdamW([layer.weight for layer in self.w_As]
|
281 |
+
+ [layer.weight for layer in self.w_Bs]
|
282 |
+
+ list(self.refine_conv.parameters()), lr=1e-5, weight_decay=1e-4)
|
requirements.txt
CHANGED
@@ -5,4 +5,8 @@ spaces
|
|
5 |
matplotlib
|
6 |
pillow
|
7 |
torch==2.2.0
|
8 |
-
torchvision==0.17.0
|
|
|
|
|
|
|
|
|
|
5 |
matplotlib
|
6 |
pillow
|
7 |
torch==2.2.0
|
8 |
+
torchvision==0.17.0
|
9 |
+
albumentations
|
10 |
+
pytorch-lightning==2.2.5
|
11 |
+
opencv-python
|
12 |
+
scikit-learn
|