|
import streamlit as st |
|
import torch |
|
|
|
import numpy as np |
|
from datetime import datetime |
|
import numpy as np |
|
import onnx |
|
import onnxruntime as ort |
|
import matplotlib.pyplot as plt |
|
import cartopy.crs as ccrs |
|
import io |
|
|
|
|
|
def pangu_config_data(): |
|
st.subheader("Pangu-Weather Model Data Input") |
|
|
|
|
|
st.markdown(""" |
|
**Input Data Requirements:** |
|
Pangu-Weather uses two NumPy arrays to represent initial atmospheric conditions: |
|
1. **Surface Data (input_surface.npy)** |
|
- Shape: `(4, 721, 1440)` |
|
- Variables: MSLP, U10, V10, T2M in this exact order. |
|
- **MSLP:** Mean Sea Level Pressure |
|
- **U10:** 10-meter Eastward Wind |
|
- **V10:** 10-meter Northward Wind |
|
- **T2M:** 2-meter Temperature |
|
2. **Upper-Air Data (input_upper.npy)** |
|
- Shape: `(5, 13, 721, 1440)` |
|
- Variables (first dim): Z, Q, T, U, V in this exact order |
|
- **Z:** Geopotential (Note: if your source provides geopotential height, multiply by 9.80665 to get geopotential) |
|
- **Q:** Specific Humidity |
|
- **T:** Temperature |
|
- **U:** Eastward Wind |
|
- **V:** Northward Wind |
|
- Pressure Levels (second dim): 1000hPa, 925hPa, 850hPa, 700hPa, 600hPa, 500hPa, 400hPa, 300hPa, 250hPa, 200hPa, 150hPa, 100hPa, 50hPa in this exact order. |
|
|
|
**Spatial & Coordinate Details:** |
|
- Latitude dimension (721 points) ranges from 90°N to -90°S with a 0.25° spacing. |
|
- Longitude dimension (1440 points) ranges from 0° to 359.75°E with a 0.25° spacing. |
|
- Data should be single precision floats (`.astype(np.float32)`). |
|
|
|
**Supported Data Sources:** |
|
- ERA5 initial fields (strongly recommended). |
|
- ECMWF initial fields (e.g., HRES forecast) can be used, but may result in a slight accuracy drop. |
|
- Other types of initial fields are not currently supported due to potentially large discrepancies in data fields. |
|
|
|
**Converting Your Data:** |
|
- ERA5 `.nc` files can be converted to `.npy` using the `netCDF4` Python package. |
|
- ECMWF `.grib` files can be converted to `.npy` using the `pygrib` Python package. |
|
- Ensure the order of variables and pressure levels is exactly as described above. |
|
""") |
|
|
|
|
|
st.markdown("### Upload Your Input Data Files") |
|
input_surface_file = st.file_uploader( |
|
"Upload input_surface.npy", |
|
type=["npy"], |
|
key="pangu_input_surface" |
|
) |
|
|
|
input_upper_file = st.file_uploader( |
|
"Upload input_upper.npy", |
|
type=["npy"], |
|
key="pangu_input_upper" |
|
) |
|
|
|
st.markdown("---") |
|
st.markdown("### References & Resources") |
|
st.markdown(""" |
|
- **Research Paper:** [Accurate medium-range global weather forecasting with 3D neural networks](https://www.nature.com/articles/s41586-023-06185-3) |
|
- [Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast](https://arxiv.org/abs/2211.02556) |
|
- **GitHub Source Code:** [Pangu-Weather on GitHub](https://github.com/198808xc/Pangu-Weather?tab=readme-ov-file) |
|
""") |
|
|
|
return input_surface_file, input_upper_file |
|
|
|
def inference_24hrs(input, input_surface): |
|
model_24 = onnx.load('Pangu-Weather/pangu_weather_24.onnx') |
|
|
|
|
|
options = ort.SessionOptions() |
|
options.enable_cpu_mem_arena=False |
|
options.enable_mem_pattern = False |
|
options.enable_mem_reuse = False |
|
|
|
options.intra_op_num_threads = 1 |
|
|
|
|
|
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',} |
|
|
|
|
|
ort_session_24 = ort.InferenceSession('Pangu-Weather/pangu_weather_24.onnx', sess_options=options, providers=['CPUExecutionProvider']) |
|
|
|
|
|
output, output_surface = ort_session_24.run(None, {'input':input, 'input_surface':input_surface}) |
|
|
|
return output, output_surface |
|
|
|
@st.cache_resource |
|
def inference_6hrs(input, input_surface): |
|
model_6 = onnx.load('Pangu-Weather/pangu_weather_6.onnx') |
|
|
|
|
|
options = ort.SessionOptions() |
|
options.enable_cpu_mem_arena=False |
|
options.enable_mem_pattern = False |
|
options.enable_mem_reuse = False |
|
|
|
options.intra_op_num_threads = 1 |
|
|
|
|
|
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',} |
|
|
|
|
|
ort_session_6 = ort.InferenceSession('Pangu-Weather/pangu_weather_6.onnx', sess_options=options, providers=['CPUExecutionProvider']) |
|
|
|
|
|
output, output_surface = ort_session_6.run(None, {'input':input, 'input_surface':input_surface}) |
|
|
|
return output, output_surface |
|
|
|
@st.cache_resource |
|
def inference_1hr(input, input_surface): |
|
model_1 = onnx.load('Pangu-Weather/pangu_weather_1.onnx') |
|
|
|
|
|
options = ort.SessionOptions() |
|
options.enable_cpu_mem_arena=False |
|
options.enable_mem_pattern = False |
|
options.enable_mem_reuse = False |
|
|
|
options.intra_op_num_threads = 1 |
|
|
|
|
|
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',} |
|
|
|
|
|
ort_session_1 = ort.InferenceSession('Pangu-Weather/pangu_weather_1.onnx', sess_options=options, providers=['CPUExecutionProvider']) |
|
|
|
|
|
output, output_surface = ort_session_1.run(None, {'input':input, 'input_surface':input_surface}) |
|
|
|
return output, output_surface |
|
|
|
@st.cache_resource |
|
def inference_3hrs(input, input_surface): |
|
model_3 = onnx.load('Pangu-Weather/pangu_weather_3.onnx') |
|
|
|
|
|
options = ort.SessionOptions() |
|
options.enable_cpu_mem_arena=False |
|
options.enable_mem_pattern = False |
|
options.enable_mem_reuse = False |
|
|
|
options.intra_op_num_threads = 1 |
|
|
|
|
|
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',} |
|
|
|
|
|
ort_session_3 = ort.InferenceSession('Pangu-Weather/pangu_weather_3.onnx', sess_options=options, providers=['CPUExecutionProvider']) |
|
|
|
|
|
output, output_surface = ort_session_3.run(None, {'input':input, 'input_surface':input_surface}) |
|
|
|
return output, output_surface |
|
|
|
@st.cache_resource |
|
def inference_custom_hrs(input, input_surface, forecast_hours): |
|
|
|
if forecast_hours % 24 != 0: |
|
raise ValueError("forecast_hours must be a multiple of 24.") |
|
|
|
|
|
model_24 = onnx.load('Pangu-Weather/pangu_weather_24.onnx') |
|
|
|
|
|
options = ort.SessionOptions() |
|
options.enable_cpu_mem_arena = False |
|
options.enable_mem_pattern = False |
|
options.enable_mem_reuse = False |
|
options.intra_op_num_threads = 1 |
|
|
|
|
|
ort_session_24 = ort.InferenceSession('Pangu-Weather/pangu_weather_24.onnx', sess_options=options, providers=['CPUExecutionProvider']) |
|
|
|
|
|
steps = forecast_hours // 24 |
|
|
|
|
|
for i in range(steps): |
|
output, output_surface = ort_session_24.run(None, {'input': input, 'input_surface': input_surface}) |
|
input, input_surface = output, output_surface |
|
|
|
|
|
return input, input_surface |
|
|
|
|
|
def plot_pangu_output(upper_data, surface_data, out_upper, out_surface): |
|
|
|
lat = np.linspace(90, -90, 721) |
|
lon = np.linspace(0, 360, 1440) |
|
|
|
|
|
upper_vars = ["Z (Geopotential)", "Q (Specific Humidity)", "T (Temperature)", "U (Eastward Wind)", "V (Northward Wind)"] |
|
upper_levels = ["1000hPa", "925hPa", "850hPa", "700hPa", "600hPa", "500hPa", |
|
"400hPa", "300hPa", "250hPa", "200hPa", "150hPa", "100hPa", "50hPa"] |
|
|
|
upper_hpa_values = [int(l.replace("hPa", "")) for l in upper_levels] |
|
|
|
surface_vars = ["MSLP", "U10", "V10", "T2M"] |
|
|
|
|
|
st.subheader("Initial Data Visualization") |
|
init_col1, init_col2 = st.columns([1,1]) |
|
|
|
with init_col1: |
|
init_data_choice = st.selectbox("Data Source", ["Upper-Air Data", "Surface Data"], key="init_data_choice") |
|
with init_col2: |
|
if init_data_choice == "Upper-Air Data": |
|
init_var = st.selectbox("Variable", upper_vars, key="init_upper_var") |
|
else: |
|
init_var = st.selectbox("Variable", surface_vars, key="init_surface_var") |
|
|
|
if init_data_choice == "Upper-Air Data": |
|
selected_level_hpa_init = st.select_slider( |
|
"Select Pressure Level (hPa)", |
|
options=upper_hpa_values, |
|
value=850, |
|
help="Select the pressure level in hPa.", |
|
key="init_level_hpa_slider" |
|
) |
|
|
|
selected_level_index_init = upper_hpa_values.index(selected_level_hpa_init) |
|
selected_var_index_init = upper_vars.index(init_var) |
|
data_to_plot_init = upper_data[selected_var_index_init, selected_level_index_init, :, :] |
|
title_init = f"Initial Upper-Air: {init_var} at {selected_level_hpa_init}hPa" |
|
else: |
|
selected_var_index_init = surface_vars.index(init_var) |
|
data_to_plot_init = surface_data[selected_var_index_init, :, :] |
|
title_init = f"Initial Surface: {init_var}" |
|
|
|
|
|
fig_init, ax_init = plt.subplots(figsize=(10, 5), subplot_kw={'projection': ccrs.PlateCarree()}) |
|
ax_init.set_title(title_init) |
|
im_init = ax_init.imshow(data_to_plot_init, extent=[lon.min(), lon.max(), lat.min(), lat.max()], |
|
origin='lower', cmap='coolwarm', transform=ccrs.PlateCarree()) |
|
ax_init.coastlines() |
|
plt.colorbar(im_init, ax=ax_init, orientation='horizontal', pad=0.05) |
|
st.pyplot(fig_init) |
|
|
|
|
|
st.subheader("Predicted Data Visualization") |
|
pred_col1, pred_col2 = st.columns([1,1]) |
|
|
|
with pred_col1: |
|
pred_data_choice = st.selectbox("Data Source", ["Upper-Air Data", "Surface Data"], key="pred_data_choice") |
|
with pred_col2: |
|
if pred_data_choice == "Upper-Air Data": |
|
pred_var = st.selectbox("Variable", upper_vars, key="pred_upper_var") |
|
else: |
|
pred_var = st.selectbox("Variable", surface_vars, key="pred_surface_var") |
|
|
|
if pred_data_choice == "Upper-Air Data": |
|
selected_level_hpa_pred = st.select_slider( |
|
"Select Pressure Level (hPa)", |
|
options=upper_hpa_values, |
|
value=850, |
|
help="Select the pressure level in hPa.", |
|
key="pred_level_hpa_slider" |
|
) |
|
selected_level_index_pred = upper_hpa_values.index(selected_level_hpa_pred) |
|
selected_var_index_pred = upper_vars.index(pred_var) |
|
data_to_plot_pred = out_upper[selected_var_index_pred, selected_level_index_pred, :, :] |
|
title_pred = f"Predicted Upper-Air: {pred_var} at {selected_level_hpa_pred}hPa" |
|
else: |
|
selected_var_index_pred = surface_vars.index(pred_var) |
|
data_to_plot_pred = out_surface[selected_var_index_pred, :, :] |
|
title_pred = f"Predicted Surface: {pred_var}" |
|
|
|
|
|
fig_pred, ax_pred = plt.subplots(figsize=(10, 5), subplot_kw={'projection': ccrs.PlateCarree()}) |
|
ax_pred.set_title(title_pred) |
|
im_pred = ax_pred.imshow(data_to_plot_pred, extent=[lon.min(), lon.max(), lat.min(), lat.max()], |
|
origin='lower', cmap='coolwarm', transform=ccrs.PlateCarree()) |
|
ax_pred.coastlines() |
|
plt.colorbar(im_pred, ax=ax_pred, orientation='horizontal', pad=0.05) |
|
st.pyplot(fig_pred) |
|
|
|
|
|
st.subheader("Download Predicted Data") |
|
|
|
|
|
buffer_upper = io.BytesIO() |
|
np.save(buffer_upper, out_upper) |
|
buffer_upper.seek(0) |
|
|
|
buffer_surface = io.BytesIO() |
|
np.save(buffer_surface, out_surface) |
|
buffer_surface.seek(0) |
|
|
|
st.download_button(label="Download Predicted Upper-Air Data", |
|
data=buffer_upper, |
|
file_name="predicted_upper.npy", |
|
mime="application/octet-stream") |
|
|
|
st.download_button(label="Download Predicted Surface Data", |
|
data=buffer_surface, |
|
file_name="predicted_surface.npy", |
|
mime="application/octet-stream") |