Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer
|
3 |
+
from threading import Thread
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import spaces
|
9 |
+
|
10 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
11 |
+
|
12 |
+
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
13 |
+
model.to("cuda:0")
|
14 |
+
|
15 |
+
@spaces.GPU
|
16 |
+
def bot_streaming(message, history):
|
17 |
+
print(message)
|
18 |
+
if message["files"]:
|
19 |
+
image = message["files"][-1]["path"]
|
20 |
+
else:
|
21 |
+
# if there's no image uploaded for this turn, look for images in the past turns
|
22 |
+
# kept inside tuples, take the last one
|
23 |
+
for hist in history:
|
24 |
+
if type(hist[0])==tuple:
|
25 |
+
image = hist[0][0]
|
26 |
+
|
27 |
+
prompt=f"[INST] <image>\n{message['text']} [/INST]"
|
28 |
+
image = Image.open(image).convert("RGB")
|
29 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
30 |
+
|
31 |
+
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
|
32 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100)
|
33 |
+
generated_text = ""
|
34 |
+
|
35 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
36 |
+
thread.start()
|
37 |
+
|
38 |
+
text_prompt =f"[INST] \n{message['text']} [/INST]"
|
39 |
+
|
40 |
+
|
41 |
+
buffer = ""
|
42 |
+
for new_text in streamer:
|
43 |
+
|
44 |
+
buffer += new_text
|
45 |
+
|
46 |
+
generated_text_without_prompt = buffer[len(text_prompt):]
|
47 |
+
time.sleep(0.04)
|
48 |
+
yield generated_text_without_prompt
|
49 |
+
|
50 |
+
|
51 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Next", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
|
52 |
+
{"text": "How to make this pastry?", "files":["./baklava.png"]}],
|
53 |
+
description="Try [LLaVA Next](https://huggingface.co/papers/2310.03744) in this demo. Upload an image and start chatting about it, or simply try one of the examples below.",
|
54 |
+
stop_btn="Stop Generation", multimodal=True)
|
55 |
+
demo.launch(debug=True)
|