Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- app.py +87 -0
- core_utils_llmlingua2.py +149 -0
- requirements.txt +5 -0
- utils_llmlingua2_test.py +0 -0
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
#from llmlingua import PromptCompressor
|
4 |
+
from utils_llmlingua2_test import PromptCompressor
|
5 |
+
import tiktoken
|
6 |
+
|
7 |
+
compressors = {
|
8 |
+
"xlm-roberta": PromptCompressor(
|
9 |
+
#model_name="microsoft/llmlingua-2-xlm-roberta-large-meetingbank",
|
10 |
+
model_name="qminh369/token-classification-llmlingua2-xlm-roberta-10k_merge_10_epoch_paper",
|
11 |
+
#model_name='qminh369/token-classification-llmlingua2-xlm-roberta-42k_merge_1_epoch',
|
12 |
+
use_llmlingua2=True,
|
13 |
+
device_map="cpu"
|
14 |
+
)
|
15 |
+
}
|
16 |
+
|
17 |
+
tokenizer = tiktoken.encoding_for_model("gpt-4")
|
18 |
+
|
19 |
+
def compress(original_prompt, compression_rate, base_model="xlm-roberta", force_tokens = ['. ', ', '], chunk_end_tokens=['.', '\n']):
|
20 |
+
if '\\n' in force_tokens:
|
21 |
+
idx = force_tokens.index('\\n')
|
22 |
+
force_tokens[idx] = '\n'
|
23 |
+
|
24 |
+
compressor = compressors.get(base_model, compressors["xlm-roberta"])
|
25 |
+
results = compressor.compress_prompt_llmlingua2(
|
26 |
+
original_prompt,
|
27 |
+
rate=compression_rate,
|
28 |
+
force_tokens=force_tokens,
|
29 |
+
chunk_end_tokens=chunk_end_tokens,
|
30 |
+
return_word_label=True,
|
31 |
+
drop_consecutive=True,
|
32 |
+
force_reserve_digit=True,
|
33 |
+
)
|
34 |
+
|
35 |
+
compressed_prompt = results["compressed_prompt"]
|
36 |
+
n_word_compressed = len(tokenizer.encode(compressed_prompt))
|
37 |
+
|
38 |
+
word_sep = "\t\t|\t\t"
|
39 |
+
label_sep = " "
|
40 |
+
lines = results["fn_labeled_original_prompt"].split(word_sep)
|
41 |
+
preserved_tokens = []
|
42 |
+
for line in lines:
|
43 |
+
word, label = line.split(label_sep)
|
44 |
+
preserved_tokens.append((word, '+') if label == '1' else (word, None))
|
45 |
+
|
46 |
+
return compressed_prompt, preserved_tokens, n_word_compressed
|
47 |
+
|
48 |
+
title = "LLMLingua-2"
|
49 |
+
|
50 |
+
header = """# LLMLingua-2
|
51 |
+
"""
|
52 |
+
|
53 |
+
theme = "soft"
|
54 |
+
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
|
55 |
+
#anno-img .mask.active {opacity: 0.7}"""
|
56 |
+
|
57 |
+
original_prompt_text = """"""
|
58 |
+
|
59 |
+
with gr.Blocks(title=title, css=css) as app:
|
60 |
+
gr.Markdown(header)
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column(scale=3):
|
63 |
+
original_prompt = gr.Textbox(value=original_prompt_text, label="Original Prompt", lines=10, max_lines=10, interactive=True)
|
64 |
+
compressed_prompt = gr.Textbox(value='', label="Compressed Prompt", lines=10, max_lines=10, interactive=False)
|
65 |
+
|
66 |
+
with gr.Column(scale=1):
|
67 |
+
base_model = gr.Radio(["xlm-roberta"], label="Base Model", value="xlm-roberta", interactive=True)
|
68 |
+
force_tokens = gr.Dropdown(['\\n', '.', '!', '?', ','],
|
69 |
+
label="Tokens to Preserve",
|
70 |
+
value=['\\n', '.', '!', '?', ','],
|
71 |
+
multiselect=True,
|
72 |
+
interactive=True)
|
73 |
+
compression_rate = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Compression rate", info="after compr. / befor compr.", interactive=True)
|
74 |
+
n_word_original = gr.Textbox(lines=1, label="Original (GPT-4 Tokens)", interactive=False, value=len(tokenizer.encode(original_prompt_text)))
|
75 |
+
n_word_compressed = gr.Textbox(lines=1, label="Compressed (GPT-4 Tokens)", interactive=False)
|
76 |
+
button = gr.Button("⚡Click to Compress")
|
77 |
+
with gr.Accordion(label="Compression Details", open=False):
|
78 |
+
diff_text = gr.HighlightedText(label="Diff", combine_adjacent=False, show_legend=True, color_map={"+": "green"})
|
79 |
+
|
80 |
+
original_prompt.change(lambda x: len(tokenizer.encode(x)), inputs=[original_prompt], outputs=[n_word_original])
|
81 |
+
original_prompt.change(lambda x: ("", "", []), inputs=[original_prompt], outputs=[compressed_prompt, n_word_compressed, diff_text])
|
82 |
+
|
83 |
+
button.click(fn=compress,
|
84 |
+
inputs=[original_prompt, compression_rate, base_model, force_tokens],
|
85 |
+
outputs=[compressed_prompt, diff_text, n_word_compressed])
|
86 |
+
|
87 |
+
app.queue(max_size=10, api_open=False).launch(show_api=False)
|
core_utils_llmlingua2.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import string
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
|
9 |
+
class TokenClfDataset(Dataset): # Hàm tạo custom dataset
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
texts,
|
13 |
+
max_len=512, # 256 (phobert) 512 (xlm-roberta)
|
14 |
+
tokenizer=None,
|
15 |
+
model_name="m_bert",
|
16 |
+
):
|
17 |
+
self.len = len(texts)
|
18 |
+
self.texts = texts
|
19 |
+
self.tokenizer = tokenizer
|
20 |
+
self.max_len = max_len
|
21 |
+
self.model_name = model_name
|
22 |
+
if "m_bert" in model_name:
|
23 |
+
self.cls_token = "[CLS]"
|
24 |
+
self.sep_token = "[SEP]"
|
25 |
+
self.unk_token = "[UNK]"
|
26 |
+
self.pad_token = "[PAD]"
|
27 |
+
self.mask_token = "[MASK]"
|
28 |
+
elif "xlm-roberta-large" in model_name:
|
29 |
+
self.bos_token = "<s>"
|
30 |
+
self.eos_token = "</s>"
|
31 |
+
self.sep_token = "</s>"
|
32 |
+
self.cls_token = "<s>"
|
33 |
+
self.unk_token = "<unk>"
|
34 |
+
self.pad_token = "<pad>"
|
35 |
+
self.mask_token = "<mask>"
|
36 |
+
elif "xlm-roberta" in model_name:
|
37 |
+
self.bos_token = "<s>"
|
38 |
+
self.eos_token = "</s>"
|
39 |
+
self.sep_token = "</s>"
|
40 |
+
self.cls_token = "<s>"
|
41 |
+
self.unk_token = "<unk>"
|
42 |
+
self.pad_token = "<pad>"
|
43 |
+
self.mask_token = "<mask>"
|
44 |
+
elif "phobert" in model_name:
|
45 |
+
self.bos_token = "<s>"
|
46 |
+
self.eos_token = "</s>"
|
47 |
+
self.sep_token = "</s>"
|
48 |
+
self.cls_token = "<s>"
|
49 |
+
self.unk_token = "<unk>"
|
50 |
+
self.pad_token = "<pad>"
|
51 |
+
self.mask_token = "<mask>"
|
52 |
+
#else: raise NotImplementedError()
|
53 |
+
|
54 |
+
def __getitem__(self, index):
|
55 |
+
text = self.texts[index]
|
56 |
+
tokenized_text = self.tokenizer.tokenize(text)
|
57 |
+
|
58 |
+
tokenized_text = (
|
59 |
+
[self.cls_token] + tokenized_text + [self.sep_token]
|
60 |
+
) # add special tokens
|
61 |
+
|
62 |
+
if len(tokenized_text) > self.max_len:
|
63 |
+
tokenized_text = tokenized_text[: self.max_len]
|
64 |
+
else:
|
65 |
+
tokenized_text = tokenized_text + [
|
66 |
+
self.pad_token for _ in range(self.max_len - len(tokenized_text))
|
67 |
+
]
|
68 |
+
|
69 |
+
attn_mask = [1 if tok != self.pad_token else 0 for tok in tokenized_text]
|
70 |
+
|
71 |
+
ids = self.tokenizer.convert_tokens_to_ids(tokenized_text)
|
72 |
+
|
73 |
+
return {
|
74 |
+
"ids": torch.tensor(ids, dtype=torch.long),
|
75 |
+
"mask": torch.tensor(attn_mask, dtype=torch.long),
|
76 |
+
}
|
77 |
+
|
78 |
+
def __len__(self):
|
79 |
+
return self.len
|
80 |
+
|
81 |
+
|
82 |
+
def seed_everything(seed: int):
|
83 |
+
random.seed(seed)
|
84 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
85 |
+
np.random.seed(seed)
|
86 |
+
torch.manual_seed(seed)
|
87 |
+
torch.cuda.manual_seed(seed)
|
88 |
+
torch.backends.cudnn.deterministic = True
|
89 |
+
torch.backends.cudnn.benchmark = False
|
90 |
+
|
91 |
+
|
92 |
+
def is_begin_of_new_word(token, model_name, force_tokens, token_map): # Thêm kí tự bắt đầu vào từ mới
|
93 |
+
if "m_bert" in model_name:
|
94 |
+
if token.lstrip("##") in force_tokens or token.lstrip("##") in set(
|
95 |
+
token_map.values()
|
96 |
+
):
|
97 |
+
return True
|
98 |
+
return not token.startswith("##")
|
99 |
+
elif "xlm-roberta-large" in model_name:
|
100 |
+
#print("xlm-roberta-large")
|
101 |
+
if (
|
102 |
+
token in string.punctuation
|
103 |
+
or token in force_tokens
|
104 |
+
or token in set(token_map.values())
|
105 |
+
):
|
106 |
+
return True
|
107 |
+
return token.startswith("▁") # check xem token có bắt đầu bằng kí tự "_" hay ko -> Trả về False
|
108 |
+
elif "xlm-roberta" in model_name:
|
109 |
+
#print("xlm-roberta-large")
|
110 |
+
if (
|
111 |
+
token in string.punctuation
|
112 |
+
or token in force_tokens
|
113 |
+
or token in set(token_map.values())
|
114 |
+
):
|
115 |
+
return True
|
116 |
+
return token.startswith("▁")
|
117 |
+
elif "phobert" in model_name:
|
118 |
+
#print("minh phobert")
|
119 |
+
#print("xlm-roberta-large")
|
120 |
+
if (
|
121 |
+
token in string.punctuation # điều kiện hoặc
|
122 |
+
or token in force_tokens
|
123 |
+
or token in set(token_map.values())
|
124 |
+
):
|
125 |
+
return True
|
126 |
+
#return token.startswith("▁") #
|
127 |
+
#return not token.startswith("▁")
|
128 |
+
#return not token.startswith("@@")
|
129 |
+
return not token.endswith("@@")
|
130 |
+
#return token.startswith("@@")
|
131 |
+
#else: raise NotImplementedError()
|
132 |
+
|
133 |
+
def replace_added_token(token, token_map):
|
134 |
+
for ori_token, new_token in token_map.items():
|
135 |
+
token = token.replace(new_token, ori_token)
|
136 |
+
return token
|
137 |
+
|
138 |
+
def get_pure_token(token, model_name): # hàm get pure token trả về token gốc (sau khi loại bỏ kí tự đặc biệt subword)
|
139 |
+
if "m_bert" in model_name:
|
140 |
+
return token.lstrip("##")
|
141 |
+
elif "xlm-roberta-large" in model_name:
|
142 |
+
return token.lstrip("▁") # bỏ kí tự "_" ở phía bên trái của từ
|
143 |
+
elif "xlm-roberta" in model_name:
|
144 |
+
return token.lstrip("▁") # bỏ kí tự "_" ở ph��a bên trái của từ
|
145 |
+
elif "phobert" in model_name:
|
146 |
+
#return token.lstrip("▁")
|
147 |
+
#return token.lstrip("@@")
|
148 |
+
return token.rstrip("@@")
|
149 |
+
# else: raise NotImplementedError()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
accelerate
|
3 |
+
tiktoken
|
4 |
+
nltk
|
5 |
+
transformers
|
utils_llmlingua2_test.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|