|
import copy |
|
|
|
import numpy as np |
|
|
|
from liegroups.numpy import SE3 |
|
|
|
|
|
def test_identity(): |
|
T = SE3.identity() |
|
assert isinstance(T, SE3) |
|
|
|
|
|
def test_dot(): |
|
T = np.array([[0, 0, -1, 0.1], |
|
[0, 1, 0, 0.5], |
|
[1, 0, 0, -0.5], |
|
[0, 0, 0, 1]]) |
|
T2 = T.dot(T) |
|
assert np.allclose( |
|
(SE3.from_matrix(T).dot(SE3.from_matrix(T))).as_matrix(), T2) |
|
|
|
|
|
def test_wedge_vee(): |
|
xi = [1, 2, 3, 4, 5, 6] |
|
Xi = SE3.wedge(xi) |
|
xis = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]) |
|
Xis = SE3.wedge(xis) |
|
assert np.array_equal(xi, SE3.vee(Xi)) |
|
assert np.array_equal(xis, SE3.vee(Xis)) |
|
|
|
|
|
def test_curlywedge_curlyvee(): |
|
xi = [1, 2, 3, 4, 5, 6] |
|
Psi = SE3.curlywedge(xi) |
|
xis = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]) |
|
Psis = SE3.curlywedge(xis) |
|
assert np.array_equal(xi, SE3.curlyvee(Psi)) |
|
assert np.array_equal(xis, SE3.curlyvee(Psis)) |
|
|
|
|
|
def test_odot(): |
|
p1 = [1, 2, 3] |
|
p2 = [1, 2, 3, 1] |
|
p3 = [1, 2, 3, 0] |
|
|
|
odot12 = np.vstack([SE3.odot(p1), np.zeros([1, 6])]) |
|
odot13 = np.vstack([SE3.odot(p1, directional=True), np.zeros([1, 6])]) |
|
odot2 = SE3.odot(p2) |
|
odot3 = SE3.odot(p3) |
|
|
|
assert np.array_equal(odot12, odot2) |
|
assert np.array_equal(odot13, odot3) |
|
|
|
|
|
def test_odot_vectorized(): |
|
p1 = [1, 2, 3] |
|
p2 = [2, 3, 4] |
|
ps = np.array([p1, p2]) |
|
|
|
odot1 = SE3.odot(p1) |
|
odot2 = SE3.odot(p2) |
|
odots = SE3.odot(ps) |
|
|
|
assert np.array_equal(odot1, odots[0, :, :]) |
|
assert np.array_equal(odot2, odots[1, :, :]) |
|
|
|
|
|
def test_exp_log(): |
|
T = SE3.exp([1, 2, 3, 4, 5, 6]) |
|
assert np.allclose(SE3.exp(SE3.log(T)).as_matrix(), T.as_matrix()) |
|
|
|
|
|
def test_left_jacobian(): |
|
xi1 = [1, 2, 3, 4, 5, 6] |
|
assert np.allclose( |
|
SE3.left_jacobian(xi1).dot(SE3.inv_left_jacobian(xi1)), |
|
np.identity(6) |
|
) |
|
|
|
xi2 = [0, 0, 0, 0, 0, 0] |
|
assert np.allclose( |
|
SE3.left_jacobian(xi2).dot(SE3.inv_left_jacobian(xi2)), |
|
np.identity(6) |
|
) |
|
|
|
|
|
def test_perturb(): |
|
T = SE3.exp([1, 2, 3, 4, 5, 6]) |
|
T_copy = copy.deepcopy(T) |
|
xi = [0.6, 0.5, 0.4, 0.3, 0.2, 0.1] |
|
T.perturb(xi) |
|
assert np.allclose(T.as_matrix(), (SE3.exp(xi).dot(T_copy)).as_matrix()) |
|
|
|
|
|
def test_normalize(): |
|
T = SE3.exp([1, 2, 3, 4, 5, 6]) |
|
T.rot.mat += 0.1 |
|
T.normalize() |
|
assert SE3.is_valid_matrix(T.as_matrix()) |
|
|
|
|
|
def test_inv(): |
|
T = SE3.exp([1, 2, 3, 4, 5, 6]) |
|
assert np.allclose((T.dot(T.inv())).as_matrix(), np.identity(4)) |
|
|
|
|
|
def test_adjoint(): |
|
T = SE3.exp([1, 2, 3, 4, 5, 6]) |
|
assert T.adjoint().shape == (6, 6) |
|
|
|
|
|
def test_transform_vectorized(): |
|
T = SE3.exp([1, 2, 3, 4, 5, 6]) |
|
pt1 = np.array([1, 2, 3]) |
|
pt2 = np.array([4, 5, 6]) |
|
pt3 = np.array([1, 2, 3, 1]) |
|
pt4 = np.array([4, 5, 6, 1]) |
|
pts12 = np.array([pt1, pt2]) |
|
pts34 = np.array([pt3, pt4]) |
|
Tpt1 = T.dot(pt1) |
|
Tpt2 = T.dot(pt2) |
|
Tpt3 = T.dot(pt3) |
|
Tpt4 = T.dot(pt4) |
|
Tpts12 = T.dot(pts12) |
|
Tpts34 = T.dot(pts34) |
|
assert np.allclose(Tpt1, Tpts12[0]) |
|
assert np.allclose(Tpt2, Tpts12[1]) |
|
assert np.allclose(Tpt3, Tpts34[0]) |
|
assert np.allclose(Tpt4, Tpts34[1]) |
|
|