SparseAGS / liegroups /tests /numpy /test_se3_numpy.py
qitaoz's picture
init commit
26ce2a9 verified
import copy
import numpy as np
from liegroups.numpy import SE3
def test_identity():
T = SE3.identity()
assert isinstance(T, SE3)
def test_dot():
T = np.array([[0, 0, -1, 0.1],
[0, 1, 0, 0.5],
[1, 0, 0, -0.5],
[0, 0, 0, 1]])
T2 = T.dot(T)
assert np.allclose(
(SE3.from_matrix(T).dot(SE3.from_matrix(T))).as_matrix(), T2)
def test_wedge_vee():
xi = [1, 2, 3, 4, 5, 6]
Xi = SE3.wedge(xi)
xis = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]])
Xis = SE3.wedge(xis)
assert np.array_equal(xi, SE3.vee(Xi))
assert np.array_equal(xis, SE3.vee(Xis))
def test_curlywedge_curlyvee():
xi = [1, 2, 3, 4, 5, 6]
Psi = SE3.curlywedge(xi)
xis = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]])
Psis = SE3.curlywedge(xis)
assert np.array_equal(xi, SE3.curlyvee(Psi))
assert np.array_equal(xis, SE3.curlyvee(Psis))
def test_odot():
p1 = [1, 2, 3]
p2 = [1, 2, 3, 1]
p3 = [1, 2, 3, 0]
odot12 = np.vstack([SE3.odot(p1), np.zeros([1, 6])])
odot13 = np.vstack([SE3.odot(p1, directional=True), np.zeros([1, 6])])
odot2 = SE3.odot(p2)
odot3 = SE3.odot(p3)
assert np.array_equal(odot12, odot2)
assert np.array_equal(odot13, odot3)
def test_odot_vectorized():
p1 = [1, 2, 3]
p2 = [2, 3, 4]
ps = np.array([p1, p2])
odot1 = SE3.odot(p1)
odot2 = SE3.odot(p2)
odots = SE3.odot(ps)
assert np.array_equal(odot1, odots[0, :, :])
assert np.array_equal(odot2, odots[1, :, :])
def test_exp_log():
T = SE3.exp([1, 2, 3, 4, 5, 6])
assert np.allclose(SE3.exp(SE3.log(T)).as_matrix(), T.as_matrix())
def test_left_jacobian():
xi1 = [1, 2, 3, 4, 5, 6]
assert np.allclose(
SE3.left_jacobian(xi1).dot(SE3.inv_left_jacobian(xi1)),
np.identity(6)
)
xi2 = [0, 0, 0, 0, 0, 0]
assert np.allclose(
SE3.left_jacobian(xi2).dot(SE3.inv_left_jacobian(xi2)),
np.identity(6)
)
def test_perturb():
T = SE3.exp([1, 2, 3, 4, 5, 6])
T_copy = copy.deepcopy(T)
xi = [0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
T.perturb(xi)
assert np.allclose(T.as_matrix(), (SE3.exp(xi).dot(T_copy)).as_matrix())
def test_normalize():
T = SE3.exp([1, 2, 3, 4, 5, 6])
T.rot.mat += 0.1
T.normalize()
assert SE3.is_valid_matrix(T.as_matrix())
def test_inv():
T = SE3.exp([1, 2, 3, 4, 5, 6])
assert np.allclose((T.dot(T.inv())).as_matrix(), np.identity(4))
def test_adjoint():
T = SE3.exp([1, 2, 3, 4, 5, 6])
assert T.adjoint().shape == (6, 6)
def test_transform_vectorized():
T = SE3.exp([1, 2, 3, 4, 5, 6])
pt1 = np.array([1, 2, 3])
pt2 = np.array([4, 5, 6])
pt3 = np.array([1, 2, 3, 1])
pt4 = np.array([4, 5, 6, 1])
pts12 = np.array([pt1, pt2]) # 2x3
pts34 = np.array([pt3, pt4]) # 2x4
Tpt1 = T.dot(pt1)
Tpt2 = T.dot(pt2)
Tpt3 = T.dot(pt3)
Tpt4 = T.dot(pt4)
Tpts12 = T.dot(pts12)
Tpts34 = T.dot(pts34)
assert np.allclose(Tpt1, Tpts12[0])
assert np.allclose(Tpt2, Tpts12[1])
assert np.allclose(Tpt3, Tpts34[0])
assert np.allclose(Tpt4, Tpts34[1])