SparseAGS / gradio_app.py
qitaoz's picture
init commit
aab1f32 verified
import sys
import gradio as gr
import os
import shutil
import json
import argparse
from PIL import Image
import subprocess
from sparseags.dust3r_utils import infer_dust3r
from run import main
import functools
sys.path[0] = sys.path[0] + '/dust3r'
from dust3r.model import AsymmetricCroCo3DStereo
def info_fn():
gr.Info("Data preprocessing done!")
def get_select_index(evt: gr.SelectData):
index = evt.index
cate_list = ['toy', 'butter', 'robot', 'jordan', 'eagle']
args.num_views = len(examples_full[index][0])
args.category = cate_list[index]
return examples_full[index][0], examples_full[index][0]
# check if there is a picture uploaded or selected
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image")
def preprocess(args, dust3r_model, image_block: list):
if os.path.exists('data/demo/custom'):
shutil.rmtree('data/demo/custom')
if os.path.exists('output/demo/custom'):
shutil.rmtree('output/demo/custom')
os.makedirs('data/demo/custom/source')
os.makedirs('data/demo/custom/processed')
file_names = []
for file_path in image_block:
file_name = file_path.split("/")[-1]
img_pil = Image.open(file_path)
# save image to a designated path
try:
img_pil.save(os.path.join('data/demo/custom', file_name))
except OSError:
img_pil = img_pil.convert('RGB')
img_pil.save(os.path.join('data/demo/custom', file_name))
file_names.append(os.path.join('data/demo/custom/source', file_name.split('.')[0] + '.png'))
# crop and resize image
print(f"python process.py {os.path.join('data/demo/custom', file_name)}")
subprocess.run(f"python process.py {os.path.join('data/demo/custom', file_name)}", shell=True)
# predict initial camera poses from dust3r
camera_data = infer_dust3r(dust3r_model, file_names)
with open(os.path.join('data/demo/custom', 'cameras.json'), "w") as f:
json.dump(camera_data, f)
args.num_views = len(file_names)
args.category = "custom"
processed_image_block = []
for file_path in image_block:
out_base = os.path.basename(file_path).split('.')[0]
out_rgba = os.path.join('data/demo/custom/processed', out_base + '_rgba.png')
processed_image_block.append(out_rgba)
return processed_image_block
def run_single_reconstruction(image_block: list):
args.enable_loop = False
main(args)
return f'output/demo/{args.category}/round_0/{args.category}.glb'
def run_full_reconstruction(image_block: list):
args.enable_loop = True
main(args)
if os.path.exists(f'output/demo/{args.category}/cameras_final_recovered.json'):
return f'output/demo/{args.category}/check_recovered_poses/{args.category}.glb'
elif os.path.exists(f'output/demo/{args.category}/cameras_final_init.json'):
return f'output/demo/{args.category}/reconsider_init_poses/{args.category}.glb'
else:
return f'output/demo/{args.category}/round_1/{args.category}.glb'
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--output', default='output/demo', type=str, help='Directory where obj files will be saved')
parser.add_argument('--category', default='jordan', type=str, help='Directory where obj files will be saved')
parser.add_argument('--num_pts', default=25000, type=int, help='Number of points at initialization')
parser.add_argument('--num_views', default=8, type=int, help='Number of input images')
parser.add_argument('--mesh_format', default='glb', type=str, help='Format of output mesh')
parser.add_argument('--enable_loop', default=True, help='Enable the loop-based strategy to detect and correct outliers')
parser.add_argument('--config', default='navi.yaml', type=str, help='Path to config file')
args = parser.parse_args()
_TITLE = '''Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://qitaozhao.github.io/SparseAGS"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://openreview.net/pdf?id=wgpmDyJgsg"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a>
</div>
Given a set of unposed input images, SparseAGS jointly infers the corresponding camera poses and underlying 3D, allowing high-fidelity 3D inference in the wild.
'''
_IMG_USER_GUIDE = "Once you see the preprocessed images, you can click **Run Single 3D Reconstruction**. \
If the reconstructed 3D looks bad, you can try to click **Outlier Removal & Correction** to run the full method to deal with outliers camera poses."
# load images in 'data/demo' folder as examples
examples_full = []
for example in ['toy', 'butter', 'robot', 'jordan', 'eagle']:
example_folder = os.path.join(os.path.dirname(__file__), 'data/demo', example, 'processed')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
examples_full.append([examples])
dust3r_model = AsymmetricCroCo3DStereo.from_pretrained('naver/DUSt3R_ViTLarge_BaseDecoder_224_linear').to('cuda')
print("Loaded DUSt3R model!")
preprocess = functools.partial(preprocess, args, dust3r_model)
# get_select_index = functools.partial(get_select_index, args)
# Compose demo layout & data flow
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
# Image-to-3D
with gr.Row(variant='panel'):
with gr.Column(scale=5):
# image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')#, tool=None)
image_block = gr.File(file_count="multiple")
preprocess_btn = gr.Button("Preprocess Images")
# elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
gr.Markdown(
"You have two options to run our model! (1) Upload your own images in the block above and then click **Preprocess Images** to initialize camera poses using \
DUSt3R; (2) Choose one of the preprocessed examples below (no need to click **Preprocess Images**).")
gallery = gr.Gallery(
value=[example[0][0] for example in examples_full], label="Examples", show_label=True, elem_id="gallery"
, columns=[5], rows=[1], object_fit="contain", height="256", preview=None, allow_preview=None)
preprocessed_data = gr.Gallery(
label="Preprocessed images", show_label=True, elem_id="gallery"
, columns=[4], rows=[2], object_fit="contain", height="256", preview=None, allow_preview=None)
with gr.Row(variant='panel'):
run_single_btn = gr.Button("Run Single 3D Reconstruction")
outlier_detect_btn = gr.Button("Outlier Removal & Correction")
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
with gr.Column(scale=5):
obj_single_recon = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Single Reconstruction)")
obj_outlier_detect = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Full Method, w/ Outlier Removal & Correction)")
# Select an preprocessed example
gallery.select(get_select_index, None, outputs=[image_block, preprocessed_data])
# Upload you own images and run preprocessing
preprocess_btn.click(preprocess, inputs=[image_block], outputs=[preprocessed_data], queue=False, show_progress='full').success(info_fn, None, None)
# Do single 3D reconstruction
run_single_btn.click(check_img_input, inputs=[image_block], queue=False).success(run_single_reconstruction,
inputs=[image_block],
# preprocess_chk],
# elevation_slider],
outputs=[obj_single_recon])
# Do loop-based outlier removal & correction
outlier_detect_btn.click(check_img_input, inputs=[image_block], queue=False).success(run_full_reconstruction,
inputs=[image_block],
# preprocess_chk],
# elevation_slider],
outputs=[obj_outlier_detect])
demo.queue().launch(share=True)