Spaces:
Runtime error
Runtime error
import transformers | |
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup | |
import torch | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from matplotlib import rc | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import confusion_matrix, classification_report | |
from collections import defaultdict | |
from textwrap import wrap | |
from torch import nn, optim | |
from torch.utils.data import Dataset, DataLoader | |
import torch.nn.functional as F | |
class DepressionClassifier(nn.Module): | |
def __init__(self, n_classes, pre_trained_model_name): | |
super(DepressionClassifier, self).__init__() | |
self.bert = BertModel.from_pretrained(pre_trained_model_name) | |
self.drop = nn.Dropout(p=0.3) | |
self.out = nn.Linear(self.bert.config.hidden_size, n_classes) | |
def forward(self, input_ids, attention_mask): | |
_, pooled_output = self.bert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
return_dict = False #here | |
) | |
output = self.drop(pooled_output) | |
return self.out(output) |