|
import torch |
|
import gradio as gr |
|
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer |
|
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler |
|
|
|
|
|
lyrics_generator = pipeline("text-generation", "ECE1786-AG/lyrics-generator") |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline") |
|
tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline") |
|
|
|
|
|
scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler") |
|
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler, revision="fp16", torch_dtype=torch.float16) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = pipe.to(device) |
|
|
|
def generate_lyrics(genre, prompt): |
|
complete_prompt = "<BOS> <{0}>\n{1}".format(genre, prompt) |
|
lyrics = lyrics_generator(complete_prompt, max_length=1024) |
|
lyrics = lyrics[0]['generated_text'] |
|
lyrics = lyrics.split('\n', 1)[1] |
|
|
|
return lyrics |
|
|
|
def summarize_lyrics(lyrics): |
|
text = "headline: " + lyrics |
|
encoding = tokenizer.encode_plus(text, return_tensors = "pt") |
|
input_ids = encoding["input_ids"] |
|
attention_masks = encoding["attention_mask"] |
|
beam_outputs = model.generate( |
|
input_ids = input_ids, |
|
attention_mask = attention_masks, |
|
max_length = 100, |
|
num_beams = 5, |
|
early_stopping = True, |
|
) |
|
result = tokenizer.decode(beam_outputs[0]) |
|
result = result.replace('<pad>', '') |
|
result = result.replace('</s>', '') |
|
|
|
return result |
|
|
|
def generate_cover(prompt, style, effect): |
|
prompt = summarize_lyrics(prompt) |
|
prompt = prompt + ", " + effect + ", album cover, artistic, " + style |
|
print(prompt) |
|
image = pipe(prompt).images[0] |
|
return image |
|
|
|
demo = gr.Blocks() |
|
with demo: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;"> |
|
<h1 style="font-weight: 900; margin-bottom: 7px;">ArtIstic GENREator</h1> |
|
</div> |
|
<p style="margin-bottom: 10px; font-size: 94%">Generate Inspirational Lyrics and Single Cover</p> |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
|
|
|
|
with gr.Column(): |
|
with gr.Accordion("Step 1. Generate Lyrics"): |
|
gr.Markdown("Enter the starting text and select genre to generate lyrics") |
|
with gr.Row(): |
|
input_start_text = gr.Textbox(placeholder='I am', label="Starting Text") |
|
input_lyrics_type = gr.Radio(choices=['pop', 'rap', 'country', 'rock', 'r&b'], value='pop', label="Lyrics Genre") |
|
button_gen_lyrics = gr.Button("Generate Lyrics", variant="primary") |
|
output_generated_lyrics = gr.Textbox(label="Generated Lyrics", lines=8) |
|
|
|
|
|
with gr.Column(): |
|
with gr.Accordion("Step 2. Generate Single Cover"): |
|
gr.Markdown("Cover will be generated based on style, effect and generated lyrics") |
|
with gr.Row(): |
|
input_cover_style = gr.Dropdown(choices=['painted', 'abstract', 'minimalist', 'illustrated', 'photographic', 'vintage'], value='painted', label="Track Cover Style") |
|
input_cover_effect = gr.Radio(choices=['black and white', 'highly detailed', 'blurred'], value='highly detailed', label="Track Cover Effect") |
|
button_gen_cover = gr.Button("Generate Cover", variant="primary") |
|
output_generated_cover = gr.Image(label="Generated Cover") |
|
|
|
|
|
button_gen_lyrics.click(fn=generate_lyrics, inputs=[input_lyrics_type , input_start_text], outputs=output_generated_lyrics) |
|
button_gen_cover.click(fn=generate_cover, inputs=[output_generated_lyrics, input_cover_style, input_cover_effect], outputs=output_generated_cover) |
|
|
|
demo.launch(debug=True) |