ChatGLM改成多进程运行
Browse files- crazy_functions/crazy_utils.py +1 -1
- crazy_functions/询问多个大语言模型.py +2 -1
- docs/Dockerfile+ChatGLM +1 -1
- main.py +166 -161
- request_llm/bridge_all.py +35 -13
- request_llm/bridge_chatglm.py +64 -34
- version +1 -1
crazy_functions/crazy_utils.py
CHANGED
@@ -66,7 +66,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
|
66 |
chatbot.append([inputs_show_user, ""])
|
67 |
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
68 |
executor = ThreadPoolExecutor(max_workers=16)
|
69 |
-
mutable = ["", time.time()]
|
70 |
def _req_gpt(inputs, history, sys_prompt):
|
71 |
retry_op = retry_times_at_unknown_error
|
72 |
exceeded_cnt = 0
|
|
|
66 |
chatbot.append([inputs_show_user, ""])
|
67 |
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
68 |
executor = ThreadPoolExecutor(max_workers=16)
|
69 |
+
mutable = ["", time.time(), ""]
|
70 |
def _req_gpt(inputs, history, sys_prompt):
|
71 |
retry_op = retry_times_at_unknown_error
|
72 |
exceeded_cnt = 0
|
crazy_functions/询问多个大语言模型.py
CHANGED
@@ -20,7 +20,8 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
|
20 |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
21 |
inputs=txt, inputs_show_user=txt,
|
22 |
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
23 |
-
sys_prompt=system_prompt
|
|
|
24 |
)
|
25 |
|
26 |
history.append(txt)
|
|
|
20 |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
21 |
inputs=txt, inputs_show_user=txt,
|
22 |
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
23 |
+
sys_prompt=system_prompt,
|
24 |
+
retry_times_at_unknown_error=0
|
25 |
)
|
26 |
|
27 |
history.append(txt)
|
docs/Dockerfile+ChatGLM
CHANGED
@@ -24,7 +24,7 @@ RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
|
24 |
|
25 |
# 下载分支
|
26 |
WORKDIR /gpt
|
27 |
-
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git -b v3.
|
28 |
WORKDIR /gpt/chatgpt_academic
|
29 |
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
|
30 |
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
|
|
|
24 |
|
25 |
# 下载分支
|
26 |
WORKDIR /gpt
|
27 |
+
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git -b v3.1
|
28 |
WORKDIR /gpt/chatgpt_academic
|
29 |
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
|
30 |
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
|
main.py
CHANGED
@@ -1,177 +1,182 @@
|
|
1 |
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
2 |
-
import gradio as gr
|
3 |
-
from request_llm.bridge_all import predict
|
4 |
-
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
11 |
-
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
12 |
-
if not AUTHENTICATION: AUTHENTICATION = None
|
13 |
|
14 |
-
from check_proxy import get_current_version
|
15 |
-
initial_prompt = "Serve me as a writing and programming assistant."
|
16 |
-
title_html = f"<h1 align=\"center\">ChatGPT 学术优化 {get_current_version()}</h1>"
|
17 |
-
description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)"""
|
18 |
|
19 |
-
# 问询记录, python 版本建议3.9+(越新越好)
|
20 |
-
import logging
|
21 |
-
os.makedirs("gpt_log", exist_ok=True)
|
22 |
-
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8")
|
23 |
-
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO)
|
24 |
-
print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!")
|
25 |
|
26 |
-
# 一些普通功能模块
|
27 |
-
from core_functional import get_core_functions
|
28 |
-
functional = get_core_functions()
|
29 |
|
30 |
-
# 高级函数插件
|
31 |
-
from crazy_functional import get_crazy_functions
|
32 |
-
crazy_fns = get_crazy_functions()
|
33 |
|
34 |
-
# 处理markdown文本格式的转变
|
35 |
-
gr.Chatbot.postprocess = format_io
|
36 |
|
37 |
-
# 做一些外观色彩上的调整
|
38 |
-
from theme import adjust_theme, advanced_css
|
39 |
-
set_theme = adjust_theme()
|
40 |
|
41 |
-
# 代理与自动更新
|
42 |
-
from check_proxy import check_proxy, auto_update
|
43 |
-
proxy_info = check_proxy(proxies)
|
44 |
|
45 |
-
gr_L1 = lambda: gr.Row().style()
|
46 |
-
gr_L2 = lambda scale: gr.Column(scale=scale)
|
47 |
-
if LAYOUT == "TOP-DOWN":
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
cancel_handles = []
|
53 |
-
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
click_handle.then(on_report_generated, [file_upload, chatbot], [file_upload, chatbot])
|
|
|
|
|
|
|
145 |
cancel_handles.append(click_handle)
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
165 |
-
def auto_opentab_delay():
|
166 |
-
import threading, webbrowser, time
|
167 |
-
print(f"如果浏览器没有自动打开,请复制并转到以下URL:")
|
168 |
-
print(f"\t(亮色主题): http://localhost:{PORT}")
|
169 |
-
print(f"\t(暗色主题): http://localhost:{PORT}/?__dark-theme=true")
|
170 |
-
def open():
|
171 |
-
time.sleep(2) # 打开浏览器
|
172 |
-
webbrowser.open_new_tab(f"http://localhost:{PORT}/?__dark-theme=true")
|
173 |
-
threading.Thread(target=open, name="open-browser", daemon=True).start()
|
174 |
-
threading.Thread(target=auto_update, name="self-upgrade", daemon=True).start()
|
175 |
|
176 |
-
|
177 |
-
|
|
|
1 |
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
|
|
|
|
|
|
2 |
|
3 |
+
def main():
|
4 |
+
import gradio as gr
|
5 |
+
from request_llm.bridge_all import predict
|
6 |
+
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
7 |
+
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
8 |
+
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
|
9 |
+
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
|
10 |
|
11 |
+
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
12 |
+
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
13 |
+
if not AUTHENTICATION: AUTHENTICATION = None
|
14 |
|
15 |
+
from check_proxy import get_current_version
|
16 |
+
initial_prompt = "Serve me as a writing and programming assistant."
|
17 |
+
title_html = f"<h1 align=\"center\">ChatGPT 学术优化 {get_current_version()}</h1>"
|
18 |
+
description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)"""
|
19 |
|
20 |
+
# 问询记录, python 版本建议3.9+(越新越好)
|
21 |
+
import logging
|
22 |
+
os.makedirs("gpt_log", exist_ok=True)
|
23 |
+
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8")
|
24 |
+
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO)
|
25 |
+
print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!")
|
26 |
|
27 |
+
# 一些普通功能模块
|
28 |
+
from core_functional import get_core_functions
|
29 |
+
functional = get_core_functions()
|
30 |
|
31 |
+
# 高级函数插件
|
32 |
+
from crazy_functional import get_crazy_functions
|
33 |
+
crazy_fns = get_crazy_functions()
|
34 |
|
35 |
+
# 处理markdown文本格式的转变
|
36 |
+
gr.Chatbot.postprocess = format_io
|
37 |
|
38 |
+
# 做一些外观色彩上的调整
|
39 |
+
from theme import adjust_theme, advanced_css
|
40 |
+
set_theme = adjust_theme()
|
41 |
|
42 |
+
# 代理与自动更新
|
43 |
+
from check_proxy import check_proxy, auto_update
|
44 |
+
proxy_info = check_proxy(proxies)
|
45 |
|
46 |
+
gr_L1 = lambda: gr.Row().style()
|
47 |
+
gr_L2 = lambda scale: gr.Column(scale=scale)
|
48 |
+
if LAYOUT == "TOP-DOWN":
|
49 |
+
gr_L1 = lambda: DummyWith()
|
50 |
+
gr_L2 = lambda scale: gr.Row()
|
51 |
+
CHATBOT_HEIGHT /= 2
|
52 |
|
53 |
+
cancel_handles = []
|
54 |
+
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
55 |
+
gr.HTML(title_html)
|
56 |
+
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
|
57 |
+
with gr_L1():
|
58 |
+
with gr_L2(scale=2):
|
59 |
+
chatbot = gr.Chatbot()
|
60 |
+
chatbot.style(height=CHATBOT_HEIGHT)
|
61 |
+
history = gr.State([])
|
62 |
+
with gr_L2(scale=1):
|
63 |
+
with gr.Accordion("输入区", open=True) as area_input_primary:
|
64 |
+
with gr.Row():
|
65 |
+
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
|
66 |
+
with gr.Row():
|
67 |
+
submitBtn = gr.Button("提交", variant="primary")
|
68 |
+
with gr.Row():
|
69 |
+
resetBtn = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm")
|
70 |
+
stopBtn = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm")
|
71 |
+
with gr.Row():
|
72 |
+
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}")
|
73 |
+
with gr.Accordion("基础功能区", open=True) as area_basic_fn:
|
74 |
+
with gr.Row():
|
75 |
+
for k in functional:
|
76 |
+
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
|
77 |
+
functional[k]["Button"] = gr.Button(k, variant=variant)
|
78 |
+
with gr.Accordion("函数插件区", open=True) as area_crazy_fn:
|
79 |
+
with gr.Row():
|
80 |
+
gr.Markdown("注意:以下“红颜色”标识的函数插件需从输入区读取路径作为参数.")
|
81 |
+
with gr.Row():
|
82 |
+
for k in crazy_fns:
|
83 |
+
if not crazy_fns[k].get("AsButton", True): continue
|
84 |
+
variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary"
|
85 |
+
crazy_fns[k]["Button"] = gr.Button(k, variant=variant)
|
86 |
+
crazy_fns[k]["Button"].style(size="sm")
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Accordion("更多函数插件", open=True):
|
89 |
+
dropdown_fn_list = [k for k in crazy_fns.keys() if not crazy_fns[k].get("AsButton", True)]
|
90 |
+
with gr.Column(scale=1):
|
91 |
+
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="").style(container=False)
|
92 |
+
with gr.Column(scale=1):
|
93 |
+
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary")
|
94 |
+
with gr.Row():
|
95 |
+
with gr.Accordion("点击展开“文件上传区”。上传本地文件可供红色函数插件调用。", open=False) as area_file_up:
|
96 |
+
file_upload = gr.Files(label="任何文件, 但推荐上传压缩文件(zip, tar)", file_count="multiple")
|
97 |
+
with gr.Accordion("展开SysPrompt & 交互界面布局 & Github地址", open=(LAYOUT == "TOP-DOWN")):
|
98 |
+
system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt)
|
99 |
+
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
100 |
+
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
101 |
+
max_length_sl = gr.Slider(minimum=256, maximum=4096, value=512, step=1, interactive=True, label="MaxLength",)
|
102 |
+
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
|
103 |
+
md_dropdown = gr.Dropdown(["gpt-3.5-turbo", "chatglm"], value=LLM_MODEL, label="").style(container=False)
|
104 |
|
105 |
+
gr.Markdown(description)
|
106 |
+
with gr.Accordion("备选输入区", open=True, visible=False) as area_input_secondary:
|
107 |
+
with gr.Row():
|
108 |
+
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", label="输入区2").style(container=False)
|
109 |
+
with gr.Row():
|
110 |
+
submitBtn2 = gr.Button("提交", variant="primary")
|
111 |
+
with gr.Row():
|
112 |
+
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm")
|
113 |
+
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm")
|
114 |
+
# 功能区显示开关与功能区的互动
|
115 |
+
def fn_area_visibility(a):
|
116 |
+
ret = {}
|
117 |
+
ret.update({area_basic_fn: gr.update(visible=("基础功能区" in a))})
|
118 |
+
ret.update({area_crazy_fn: gr.update(visible=("函数插件区" in a))})
|
119 |
+
ret.update({area_input_primary: gr.update(visible=("底部输入区" not in a))})
|
120 |
+
ret.update({area_input_secondary: gr.update(visible=("底部输入区" in a))})
|
121 |
+
if "底部输入区" in a: ret.update({txt: gr.update(value="")})
|
122 |
+
return ret
|
123 |
+
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2] )
|
124 |
+
# 整理反复出现的控件句柄组合
|
125 |
+
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt]
|
126 |
+
output_combo = [cookies, chatbot, history, status]
|
127 |
+
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=input_combo, outputs=output_combo)
|
128 |
+
# 提交按钮、重置按钮
|
129 |
+
cancel_handles.append(txt.submit(**predict_args))
|
130 |
+
cancel_handles.append(txt2.submit(**predict_args))
|
131 |
+
cancel_handles.append(submitBtn.click(**predict_args))
|
132 |
+
cancel_handles.append(submitBtn2.click(**predict_args))
|
133 |
+
resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
|
134 |
+
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
|
135 |
+
# 基础功能区的回调函数注册
|
136 |
+
for k in functional:
|
137 |
+
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
|
138 |
+
cancel_handles.append(click_handle)
|
139 |
+
# 文件上传区,接收文件后与chatbot的互动
|
140 |
+
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt], [chatbot, txt])
|
141 |
+
# 函数插件-固定按钮区
|
142 |
+
for k in crazy_fns:
|
143 |
+
if not crazy_fns[k].get("AsButton", True): continue
|
144 |
+
click_handle = crazy_fns[k]["Button"].click(ArgsGeneralWrapper(crazy_fns[k]["Function"]), [*input_combo, gr.State(PORT)], output_combo)
|
145 |
+
click_handle.then(on_report_generated, [file_upload, chatbot], [file_upload, chatbot])
|
146 |
+
cancel_handles.append(click_handle)
|
147 |
+
# 函数插件-下拉菜单与随变按钮的互动
|
148 |
+
def on_dropdown_changed(k):
|
149 |
+
variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary"
|
150 |
+
return {switchy_bt: gr.update(value=k, variant=variant)}
|
151 |
+
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt] )
|
152 |
+
# 随变按钮的回调函数注册
|
153 |
+
def route(k, *args, **kwargs):
|
154 |
+
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
155 |
+
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(*args, **kwargs)
|
156 |
+
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo, gr.State(PORT)], output_combo)
|
157 |
click_handle.then(on_report_generated, [file_upload, chatbot], [file_upload, chatbot])
|
158 |
+
# def expand_file_area(file_upload, area_file_up):
|
159 |
+
# if len(file_upload)>0: return {area_file_up: gr.update(open=True)}
|
160 |
+
# click_handle.then(expand_file_area, [file_upload, area_file_up], [area_file_up])
|
161 |
cancel_handles.append(click_handle)
|
162 |
+
# 终止按钮的回调函数注册
|
163 |
+
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
164 |
+
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
165 |
+
|
166 |
+
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
167 |
+
def auto_opentab_delay():
|
168 |
+
import threading, webbrowser, time
|
169 |
+
print(f"如果浏览器没有自动打开,请复制并转到以下URL:")
|
170 |
+
print(f"\t(亮色主题): http://localhost:{PORT}")
|
171 |
+
print(f"\t(暗色主题): http://localhost:{PORT}/?__dark-theme=true")
|
172 |
+
def open():
|
173 |
+
time.sleep(2) # 打开浏览器
|
174 |
+
webbrowser.open_new_tab(f"http://localhost:{PORT}/?__dark-theme=true")
|
175 |
+
threading.Thread(target=open, name="open-browser", daemon=True).start()
|
176 |
+
threading.Thread(target=auto_update, name="self-upgrade", daemon=True).start()
|
177 |
+
|
178 |
+
auto_opentab_delay()
|
179 |
+
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
if __name__ == "__main__":
|
182 |
+
main()
|
request_llm/bridge_all.py
CHANGED
@@ -31,6 +31,24 @@ methods = {
|
|
31 |
"tgui-ui": tgui_ui,
|
32 |
}
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
|
35 |
"""
|
36 |
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
@@ -62,17 +80,13 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|
62 |
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
63 |
else:
|
64 |
# 如果同时询问多个大语言模型:
|
65 |
-
executor = ThreadPoolExecutor(max_workers=
|
66 |
models = model.split('&')
|
67 |
n_model = len(models)
|
68 |
|
69 |
window_len = len(observe_window)
|
70 |
-
|
71 |
-
|
72 |
-
elif window_len==1:
|
73 |
-
window_mutex = [[""] for _ in range(n_model)] + [True]
|
74 |
-
elif window_len==2:
|
75 |
-
window_mutex = [["", time.time()] for _ in range(n_model)] + [True]
|
76 |
|
77 |
futures = []
|
78 |
for i in range(n_model):
|
@@ -85,12 +99,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|
85 |
method = methods['tgui-no-ui']
|
86 |
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
|
87 |
llm_kwargs_feedin['llm_model'] = model
|
88 |
-
future = executor.submit(method, inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
|
89 |
futures.append(future)
|
90 |
|
91 |
def mutex_manager(window_mutex, observe_window):
|
92 |
while True:
|
93 |
-
time.sleep(0.
|
94 |
if not window_mutex[-1]: break
|
95 |
# 看门狗(watchdog)
|
96 |
for i in range(n_model):
|
@@ -98,8 +112,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|
98 |
# 观察窗(window)
|
99 |
chat_string = []
|
100 |
for i in range(n_model):
|
101 |
-
chat_string.append( f"
|
102 |
-
res = '
|
103 |
# # # # # # # # # # #
|
104 |
observe_window[0] = res
|
105 |
|
@@ -107,10 +121,18 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|
107 |
t_model.start()
|
108 |
|
109 |
return_string_collect = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
for i, future in enumerate(futures): # wait and get
|
111 |
-
return_string_collect.append( f"
|
|
|
112 |
window_mutex[-1] = False # stop mutex thread
|
113 |
-
res = '
|
114 |
return res
|
115 |
|
116 |
|
|
|
31 |
"tgui-ui": tgui_ui,
|
32 |
}
|
33 |
|
34 |
+
def LLM_CATCH_EXCEPTION(f):
|
35 |
+
"""
|
36 |
+
装饰器函数,将错误显示出来
|
37 |
+
"""
|
38 |
+
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
|
39 |
+
try:
|
40 |
+
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
41 |
+
except Exception as e:
|
42 |
+
from toolbox import get_conf
|
43 |
+
import traceback
|
44 |
+
proxies, = get_conf('proxies')
|
45 |
+
tb_str = '\n```\n' + traceback.format_exc() + '\n```\n'
|
46 |
+
observe_window[0] = tb_str
|
47 |
+
return tb_str
|
48 |
+
return decorated
|
49 |
+
|
50 |
+
colors = ['#FF00FF', '#00FFFF', '#FF0000''#990099', '#009999', '#990044']
|
51 |
+
|
52 |
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
|
53 |
"""
|
54 |
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
|
|
80 |
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
81 |
else:
|
82 |
# 如果同时询问多个大语言模型:
|
83 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
84 |
models = model.split('&')
|
85 |
n_model = len(models)
|
86 |
|
87 |
window_len = len(observe_window)
|
88 |
+
assert window_len==3
|
89 |
+
window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True]
|
|
|
|
|
|
|
|
|
90 |
|
91 |
futures = []
|
92 |
for i in range(n_model):
|
|
|
99 |
method = methods['tgui-no-ui']
|
100 |
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
|
101 |
llm_kwargs_feedin['llm_model'] = model
|
102 |
+
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
|
103 |
futures.append(future)
|
104 |
|
105 |
def mutex_manager(window_mutex, observe_window):
|
106 |
while True:
|
107 |
+
time.sleep(0.5)
|
108 |
if not window_mutex[-1]: break
|
109 |
# 看门狗(watchdog)
|
110 |
for i in range(n_model):
|
|
|
112 |
# 观察窗(window)
|
113 |
chat_string = []
|
114 |
for i in range(n_model):
|
115 |
+
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
|
116 |
+
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
|
117 |
# # # # # # # # # # #
|
118 |
observe_window[0] = res
|
119 |
|
|
|
121 |
t_model.start()
|
122 |
|
123 |
return_string_collect = []
|
124 |
+
while True:
|
125 |
+
worker_done = [h.done() for h in futures]
|
126 |
+
if all(worker_done):
|
127 |
+
executor.shutdown()
|
128 |
+
break
|
129 |
+
time.sleep(1)
|
130 |
+
|
131 |
for i, future in enumerate(futures): # wait and get
|
132 |
+
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
|
133 |
+
|
134 |
window_mutex[-1] = False # stop mutex thread
|
135 |
+
res = '<br/>\n\n---\n\n'.join(return_string_collect)
|
136 |
return res
|
137 |
|
138 |
|
request_llm/bridge_chatglm.py
CHANGED
@@ -3,35 +3,69 @@ from transformers import AutoModel, AutoTokenizer
|
|
3 |
import time
|
4 |
import importlib
|
5 |
from toolbox import update_ui, get_conf
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
27 |
"""
|
|
|
28 |
函数的说明请见 request_llm/bridge_all.py
|
29 |
"""
|
30 |
-
global
|
31 |
-
if
|
32 |
-
|
|
|
33 |
|
34 |
-
model_loader()
|
35 |
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
36 |
history_feedin = []
|
37 |
for i in range(len(history)//2):
|
@@ -40,29 +74,27 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|
40 |
|
41 |
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
42 |
response = ""
|
43 |
-
for response
|
44 |
-
top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
45 |
-
# 观测窗,把已经获取的数据显示出去
|
46 |
observe_window[0] = response
|
47 |
-
# 看门狗 (watchdog),如果超过期限没有喂狗,则终止
|
48 |
if len(observe_window) >= 2:
|
49 |
if (time.time()-observe_window[1]) > watch_dog_patience:
|
50 |
raise RuntimeError("程序终止。")
|
51 |
-
# if not console_slience:
|
52 |
-
# print(response)
|
53 |
return response
|
54 |
|
55 |
|
|
|
56 |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
57 |
"""
|
|
|
58 |
函数的说明请见 request_llm/bridge_all.py
|
59 |
"""
|
60 |
-
global chatglm_model, chatglm_tokenizer
|
61 |
chatbot.append((inputs, ""))
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
yield from update_ui(chatbot=chatbot, history=[])
|
65 |
-
model_loader()
|
66 |
|
67 |
if additional_fn is not None:
|
68 |
import core_functional
|
@@ -71,13 +103,11 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|
71 |
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
72 |
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
73 |
|
74 |
-
|
75 |
history_feedin = []
|
76 |
for i in range(len(history)//2):
|
77 |
history_feedin.append(["What can I do?", system_prompt] )
|
78 |
history_feedin.append([history[2*i], history[2*i+1]] )
|
79 |
|
80 |
-
for response
|
81 |
-
top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
82 |
chatbot[-1] = (inputs, response)
|
83 |
yield from update_ui(chatbot=chatbot, history=history)
|
|
|
3 |
import time
|
4 |
import importlib
|
5 |
from toolbox import update_ui, get_conf
|
6 |
+
from multiprocessing import Process, Pipe
|
7 |
|
8 |
+
#################################################################################
|
9 |
+
class GetGLMHandle(Process):
|
10 |
+
def __init__(self):
|
11 |
+
super().__init__(daemon=True)
|
12 |
+
self.parent, self.child = Pipe()
|
13 |
+
self.chatglm_model = None
|
14 |
+
self.chatglm_tokenizer = None
|
15 |
+
self.start()
|
16 |
+
print('初始化')
|
17 |
+
|
18 |
+
def ready(self):
|
19 |
+
return self.chatglm_model is not None
|
20 |
|
21 |
+
def run(self):
|
22 |
+
while True:
|
23 |
+
try:
|
24 |
+
if self.chatglm_model is None:
|
25 |
+
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
26 |
+
device, = get_conf('LOCAL_MODEL_DEVICE')
|
27 |
+
if device=='cpu':
|
28 |
+
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
29 |
+
else:
|
30 |
+
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
31 |
+
self.chatglm_model = self.chatglm_model.eval()
|
32 |
+
break
|
33 |
+
else:
|
34 |
+
break
|
35 |
+
except:
|
36 |
+
pass
|
37 |
+
while True:
|
38 |
+
kwargs = self.child.recv()
|
39 |
+
try:
|
40 |
+
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
|
41 |
+
self.child.send(response)
|
42 |
+
except:
|
43 |
+
self.child.send('[Local Message] Call ChatGLM fail.')
|
44 |
+
self.child.send('[Finish]')
|
45 |
|
46 |
+
def stream_chat(self, **kwargs):
|
47 |
+
self.parent.send(kwargs)
|
48 |
+
while True:
|
49 |
+
res = self.parent.recv()
|
50 |
+
if res != '[Finish]':
|
51 |
+
yield res
|
52 |
+
else:
|
53 |
+
break
|
54 |
+
return
|
55 |
+
|
56 |
+
global glm_handle
|
57 |
+
glm_handle = None
|
58 |
+
#################################################################################
|
59 |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
60 |
"""
|
61 |
+
多线程方法
|
62 |
函数的说明请见 request_llm/bridge_all.py
|
63 |
"""
|
64 |
+
global glm_handle
|
65 |
+
if glm_handle is None:
|
66 |
+
glm_handle = GetGLMHandle()
|
67 |
+
observe_window[0] = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
68 |
|
|
|
69 |
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
70 |
history_feedin = []
|
71 |
for i in range(len(history)//2):
|
|
|
74 |
|
75 |
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
76 |
response = ""
|
77 |
+
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
|
|
|
|
78 |
observe_window[0] = response
|
|
|
79 |
if len(observe_window) >= 2:
|
80 |
if (time.time()-observe_window[1]) > watch_dog_patience:
|
81 |
raise RuntimeError("程序终止。")
|
|
|
|
|
82 |
return response
|
83 |
|
84 |
|
85 |
+
|
86 |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
87 |
"""
|
88 |
+
单线程方法
|
89 |
函数的说明请见 request_llm/bridge_all.py
|
90 |
"""
|
|
|
91 |
chatbot.append((inputs, ""))
|
92 |
+
|
93 |
+
global glm_handle
|
94 |
+
if glm_handle is None:
|
95 |
+
glm_handle = GetGLMHandle()
|
96 |
+
chatbot[-1] = (inputs, "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……")
|
97 |
yield from update_ui(chatbot=chatbot, history=[])
|
|
|
98 |
|
99 |
if additional_fn is not None:
|
100 |
import core_functional
|
|
|
103 |
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
104 |
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
105 |
|
|
|
106 |
history_feedin = []
|
107 |
for i in range(len(history)//2):
|
108 |
history_feedin.append(["What can I do?", system_prompt] )
|
109 |
history_feedin.append([history[2*i], history[2*i+1]] )
|
110 |
|
111 |
+
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
|
|
112 |
chatbot[-1] = (inputs, response)
|
113 |
yield from update_ui(chatbot=chatbot, history=history)
|
version
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"version": 3.
|
3 |
"show_feature": true,
|
4 |
"new_feature": "支持ChatGLM <-> 支持多LLM模型同时对话"
|
5 |
}
|
|
|
1 |
{
|
2 |
+
"version": 3.1,
|
3 |
"show_feature": true,
|
4 |
"new_feature": "支持ChatGLM <-> 支持多LLM模型同时对话"
|
5 |
}
|