|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
from diffusers import ControlNetModel, UniPCMultistepScheduler |
|
from hico_pipeline import StableDiffusionControlNetMultiLayoutPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained("qihoo360/HiCo_T2I", torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetMultiLayoutPipeline.from_pretrained( |
|
"krnl/realisticVisionV51_v51VAE", controlnet=[controlnet], torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(device) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
object_classes_list = ["A photograph of a young woman wrapped in a towel wearing a pair of sunglasses", "a towel", "a young woman wrapped in a towel wearing a pair of sunglasses", "a pair of sunglasses"] |
|
object_bboxes_list = ["0,0,512,512", "17,77,144,155", "16,28,157,155", "82,44,129,63"] |
|
|
|
|
|
def submit_prompt(prompt): |
|
if object_classes_list: |
|
object_classes_list[0] = prompt |
|
else: |
|
object_classes_list.insert(0, prompt) |
|
|
|
if not object_bboxes_list: |
|
object_bboxes_list.insert(0, "0,0,512,512") |
|
|
|
combined_list = [[cls, bbox] for cls, bbox in zip(object_classes_list, object_bboxes_list)] |
|
return combined_list, gr.update(interactive=False) |
|
|
|
|
|
def add_object(object_class, bbox): |
|
try: |
|
|
|
x1, y1, x2, y2 = map(int, bbox.split(",")) |
|
|
|
|
|
if x2 < x1 or y2 < y1: |
|
return "Error: x2 cannot be less than x1 and y2 cannot be less than y1.", [] |
|
if x1 < 0 or y1 < 0 or x2 > 512 or y2 > 512: |
|
return "Error: Coordinates must be between 0 and 512.", [] |
|
|
|
|
|
object_classes_list.append(object_class) |
|
object_bboxes_list.append(bbox) |
|
combined_list = [[cls, bbox] for cls, bbox in zip(object_classes_list, object_bboxes_list)] |
|
return combined_list |
|
|
|
except ValueError: |
|
return "Error: Invalid input format. Use x1,y1,x2,y2.", [] |
|
|
|
|
|
def generate_image(prompt, guidance_scale, num_inference_steps, randomize_seed, seed): |
|
img_width, img_height = 512, 512 |
|
r_image = np.zeros((img_height, img_width, 3), dtype=np.uint8) |
|
list_cond_image = [] |
|
|
|
for bbox in object_bboxes_list: |
|
x1, y1, x2, y2 = map(int, bbox.split(",")) |
|
cond_image = np.zeros_like(r_image, dtype=np.uint8) |
|
cond_image[y1:y2, x1:x2] = 255 |
|
list_cond_image.append(Image.fromarray(cond_image).convert('RGB')) |
|
|
|
if randomize_seed or seed is None: |
|
seed = np.random.randint(0, MAX_SEED) |
|
|
|
generator = torch.manual_seed(seed) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
layo_prompt=object_classes_list, |
|
guess_mode=False, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
image=list_cond_image, |
|
fuse_type="avg", |
|
width=512, |
|
height=512 |
|
).images[0] |
|
print(type(image),'image') |
|
return image, seed |
|
|
|
|
|
def clear_arrays(): |
|
object_classes_list.clear() |
|
object_bboxes_list.clear() |
|
return [], gr.update(value="", interactive=True) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# HiCo_T2I 512px") |
|
gr.Markdown(" You can directly click **Generate Image** or customize it by first entering the global caption, followed by subcaptions and their corresponding coordinates.") |
|
|
|
|
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt here", |
|
container=False, |
|
|
|
) |
|
submit_button = gr.Button("Submit Prompt", scale=0) |
|
|
|
|
|
objects_display = gr.Dataframe( |
|
headers=["Caption", "Bounding Box"], |
|
value=[[cls, bbox] for cls, bbox in zip(object_classes_list, object_bboxes_list)] |
|
) |
|
|
|
with gr.Row(): |
|
object_class_input = gr.Textbox(label="Sub-caption", placeholder="Enter Sub-caption (e.g., apple)") |
|
bbox_input = gr.Textbox(label="Bounding Box (x1,y1,x2,y2 and >=0 and <=512)", placeholder="Enter bounding box coordinates") |
|
|
|
add_button = gr.Button("Add") |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=7.5 |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=50 |
|
) |
|
|
|
generate_button = gr.Button("Generate Image") |
|
result = gr.Image(label="Generated Image") |
|
|
|
|
|
refresh_button = gr.Button("Refresh") |
|
|
|
|
|
submit_button.click( |
|
fn=submit_prompt, |
|
inputs=prompt, |
|
outputs=[objects_display, prompt] |
|
) |
|
|
|
|
|
add_button.click( |
|
fn=add_object, |
|
inputs=[object_class_input, bbox_input], |
|
outputs=[objects_display] |
|
) |
|
|
|
|
|
generate_button.click( |
|
fn=generate_image, |
|
inputs=[prompt, guidance_scale, num_inference_steps, randomize_seed, seed], |
|
outputs=[result, seed] |
|
) |
|
|
|
|
|
refresh_button.click( |
|
fn=clear_arrays, |
|
inputs=None, |
|
outputs=[objects_display, prompt] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|