BerfScene / models /stylenerf_generator.py
3v324v23's picture
init
2f85de4
# python3.8
"""Contains the implementation of generator described in StyleNeRF."""
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import repeat
from einops import rearrange
from utils import eg3d_misc as misc
from models.utils.official_stylegan2_model_helper import modulated_conv2d
from third_party.stylegan2_official_ops import upfirdn2d
from third_party.stylegan2_official_ops import bias_act
from models.utils.official_stylegan2_model_helper import FullyConnectedLayer
from models.utils.official_stylegan2_model_helper import MappingNetwork
from models.utils.official_stylegan2_model_helper import SynthesisBlock
from models.utils.official_stylegan2_model_helper import ToRGBLayer
from models.utils.official_stylegan2_model_helper import Conv2dLayer
from models.rendering import Renderer
from models.rendering import FeatureExtractor
from models.volumegan_generator import PositionEncoder
class StyleNeRFGenerator(nn.Module):
"""Defines the generator network in StyleNeRF."""
def __init__(self, ):
super().__init__()
# Set up mapping network.
self.mapping = MappingNetwork() ### TODO: Accomplish filling kwargs.
# Set up overall Renderer.
self.renderer = Renderer()
# Set up the position encoder.
self.position_encoder = PositionEncoder() ### TODO: Accomplish filling kwargs.
# Set up the feature extractor.
self.feature_extractor = FeatureExtractor(ref_mode='none')
# Set up the post module in the feature extractor.
self.post_module = NeRFMLPNetwork() ### TODO: Accomplish filling kwargs.
# Set up the fully-connected layer head.
self.fc_head = FCHead() ### TODO: Accomplish filling kwargs.
# Set up the post neural renderer.
self.post_neural_renderer = PostNeuralRendererNetwork() ### TODO: Accomplish filling kwargs.
def forward(self,):
pass
class NeRFMLPNetwork(nn.Module):
"""Defines class of FOREGROUND/BACKGROUND NeRF MLP Network in StyleNeRF.
Basically, this module consists of several `Style2Layer`s where convolutions
with 1x1 kernel are involved. Note that this module is not strictly
equivalent to MLP. Since 1x1 convolution is equal to fully-connected layer,
we name this module `NeRFMLPNetwork`. Besides, our `NeRFMLPNetwork` takes in
sampled points, view directions, latent codes as input, and outputs features
for the following computation of `sigma` and `rgb`.
"""
def __init__(
self,
# dimensions
input_dim=60,
w_dim=512, # style latent
hidden_size=128,
n_blocks=8,
# architecture settings
activation='lrelu',
use_skip=False,
nerf_kwargs={}
):
super().__init__()
self.input_dim = input_dim
self.hidden_size = hidden_size
self.w_dim = w_dim
self.activation = activation
self.n_blocks = n_blocks
self.use_skip = use_skip
for key in nerf_kwargs:
setattr(self, key, nerf_kwargs[key])
self.fc_in = Style2Layer(self.input_dim,
self.hidden_size,
self.w_dim,
activation=self.activation)
self.num_wp = 1
self.skip_layer = self.n_blocks // 2 - 1 if self.use_skip else None
if self.n_blocks > 1:
self.blocks = nn.ModuleList([
Style2Layer(self.hidden_size if i != self.skip_layer else
self.hidden_size + self.input_dim,
self.hidden_size,
w_dim,
activation=self.activation,
magnitude_ema_beta=self.magnitude_ema_beta)
for i in range(self.n_blocks - 1)
])
self.num_wp += (self.n_blocks - 1)
def forward(self,
pre_point_features,
points_encoding,
wp=None,
use_both=False):
input_p = points_encoding
if use_both:
input_p = torch.cat([pre_point_features, input_p], 1)
out = self.fc_in(points_encoding, wp[:, 0] if wp is not None else None)
if self.n_blocks > 1:
for idx, layer in enumerate(self.blocks):
wp_i = wp[:, idx + 1] if wp is not None else None
if (self.skip_layer is not None) and (idx == self.skip_layer):
out = torch.cat([out, input_p], 1)
out = layer(out, wp_i, up=1)
return out
class FCHead(nn.Module):
"""Defines the fully connnected layer head in StyleNeRF.
Basically, this module is composed of several `ToRGBLayer`s and
`Conv2dLayer`s where all convolutions are with kernel size 1x1, in order to
decode the common feature of each point to the sigma (feature) and
rgb (feature). Note that this module is not strictly equivalent to the fully
connnected layer. Since 1x1 convolution is equal to fully-connected layer,
we name this module `FCHead`.
"""
def __init__(self,
in_dim=128,
w_dim=512,
w_idx=8,
sigma_out_dim=1,
rgb_out_dim=256,
img_channels=3,
predict_rgb=True):
super().__init__()
self.predict_rgb = predict_rgb
self.w_idx = w_idx
self.sigma_head = ToRGBLayer(in_dim,
sigma_out_dim,
w_dim,
kernel_size=1)
self.rgb_head = ToRGBLayer(in_dim, rgb_out_dim, w_dim, kernel_size=1)
# Predict RGB over features.
if self.predict_rgb:
self.to_rgb = Conv2dLayer(rgb_out_dim,
img_channels,
kernel_size=1,
activation='linear')
def forward(self,
post_point_features,
wp=None,
dirs=None,
height=None,
width=None):
assert (height is not None) and (width is not None)
# TODO: Check shape.
post_point_features = rearrange(post_point_features,
'N C R_K 1 -> N C R K',
R=height * width)
post_point_features = rearrange(post_point_features,
'N C R K -> (N K) C H W',
H=height,
W=width)
sigma = self.sigma_head(post_point_features, wp[:, self.w_idx])
rgb_feat = self.rgb_head(post_point_features, wp[:, -1])
rgb = self.to_rgb(post_point_features)
rgb_feat = torch.cat([rgb_feat, rgb], dim=1)
results = {'sigma': sigma, 'rgb': rgb_feat}
return results
class PostNeuralRendererNetwork(nn.Module):
"""Implements the post neural renderer network in StyleNeRF to renderer
high-resolution images.
Basically, this module comprises several `SynthesisBlock` with respect to
different resolutions, which is analogous to StyleGAN2 architecure, and it
is trained progressively during training. Besides, it is called `Upsampler`
in the official implemetation.
"""
no_2d_renderer = False
block_reses = None
upsample_type = 'default'
img_channels = 3
in_res = 32
out_res = 512
channel_base = 1
channel_base_sz = None # usually 32768, which equals 2 ** 15.
channel_max = 512
channel_dict = None
out_channel_dict = None
def __init__(self, upsampler_kwargs, **other_kwargs):
super().__init__()
for key in other_kwargs:
if hasattr(self, key) and (key not in upsampler_kwargs):
setattr(upsampler_kwargs, key, other_kwargs[key])
for key in upsampler_kwargs:
if hasattr(self, key):
setattr(self, key, upsampler_kwargs[key])
self.out_res_log2 = int(np.log2(self.out_res))
# Set up resolution of blocks.
if self.block_reses is None:
self.block_resolutions = [
2**i for i in range(2, self.out_res_log2 + 1)
]
self.block_resolutions = [
res for res in self.block_resolutions if res > self.in_res
]
else:
self.block_resolutions = self.block_reses
if self.no_2d_renderer:
self.block_resolutions = []
def build_network(self, w_dim, in_dim, **block_kwargs):
networks = []
if len(self.block_resolutions) == 0:
return networks
channel_base = int(
self.channel_base * 32768
) if self.channel_base_sz is None else self.channel_base_sz
# Don't use fp16 for the first block.
fp16_resolution = self.block_resolutions[0] * 2
if self.channel_dict is None:
channel_dict = {
res: min(channel_base // res, self.channel_max)
for res in self.block_resolutions
}
else:
channel_dict = self.channel_dict
if self.out_channel_dict is None:
img_channels = self.out_channel_dict
else:
img_channels = {
res: self.img_channels
for res in self.block_resolutions
}
for idx, res in enumerate(self.block_resolutions):
res_before = self.block_resolutions[idx - 1] if idx > 0 else self.in_res
in_channels = channel_dict[res_before] if idx > 0 else in_dim
out_channels = channel_dict[res]
use_fp16 = (res > fp16_resolution)
is_last = (idx == (len(self.block_resolutions) - 1))
block = SynthesisBlock(in_channels=in_channels,
out_channels=out_channels,
w_dim=w_dim,
resolution=res,
img_channels=img_channels[res],
is_last=is_last,
use_fp16=use_fp16,
**block_kwargs) # TODO: Check the kwargs of `SynthesisBlock`, and add `upsample_mode` in our `SynthesisBlock`
networks += [
{'block': block,
'num_wp': block.num_conv if not is_last else block.num_conv + block.num_torgb,
'name': f'b{res}' if res_before != res else f'b{res}_l{idx}'}
]
self.num_wp = sum(net['num_wp'] for net in networks)
return networks
def split_wp(self, wp, blocks):
block_wp = []
w_idx = 0
for idx, _ in enumerate(self.block_resolutions):
block = blocks[idx]
block_wp.append(
wp.narrow(1, w_idx, block.num_conv + block.num_torgb))
w_idx = w_idx + block.num_conv
return block_wp
def forward(self, blocks, block_wp, x, image, target_res):
images = []
for idx, (res,
cur_wp) in enumerate(zip(self.block_resolutions, block_wp)):
if res > target_res:
break
block = blocks[idx]
x, image = block(x, image, cur_wp) # TODO: Check whether use noise here.
images.append(image)
return images
class Style2Layer(nn.Module):
"""Defines the class of simplified `SynthesisLayer` used in NeRF block with
the following modifications:
- No noise injection;
- Kernel size set to be 1x1.
"""
def __init__(
self,
in_channels,
out_channels,
w_dim,
activation='lrelu',
resample_filter=[1, 3, 3, 1],
magnitude_ema_beta=-1, # -1 means not using magnitude ema
**unused_kwargs):
super().__init__()
self.activation = activation
self.conv_clamp = None
self.register_buffer('resample_filter',
upfirdn2d.setup_filter(resample_filter))
self.padding = 0
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.w_dim = w_dim
self.in_features = in_channels
self.out_features = out_channels
memory_format = torch.contiguous_format
if w_dim > 0:
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
self.weight = torch.nn.Parameter(
torch.randn([out_channels, in_channels, 1,
1]).to(memory_format=memory_format))
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
else:
self.weight = torch.nn.Parameter(
torch.Tensor(out_channels, in_channels))
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
self.weight_gain = 1.
# Initialization.
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(
self.weight)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
self.magnitude_ema_beta = magnitude_ema_beta
if magnitude_ema_beta > 0:
self.register_buffer('w_avg', torch.ones([]))
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, style={}'.format(
self.in_features, self.out_features, self.w_dim)
def forward(self,
x,
w=None,
fused_modconv=None,
gain=1,
up=1,
**unused_kwargs):
flip_weight = True
act = self.activation
if (self.magnitude_ema_beta > 0):
if self.training: # updating EMA.
with torch.autograd.profiler.record_function(
'update_magnitude_ema'):
magnitude_cur = x.detach().to(
torch.float32).square().mean()
self.w_avg.copy_(
magnitude_cur.lerp(self.w_avg,
self.magnitude_ema_beta))
input_gain = self.w_avg.rsqrt()
x = x * input_gain
if fused_modconv is None:
with misc.suppress_tracer_warnings():
# this value will be treated as a constant
fused_modconv = not self.training
if self.w_dim > 0: # modulated convolution
assert x.ndim == 4, "currently not support modulated MLP"
styles = self.affine(w) # Batch x style_dim
if x.size(0) > styles.size(0):
styles = repeat(styles,
'b c -> (b s) c',
s=x.size(0) // styles.size(0))
x = modulated_conv2d(x=x,
weight=self.weight,
styles=styles,
noise=None,
up=up,
padding=self.padding,
resample_filter=self.resample_filter,
flip_weight=flip_weight,
fused_modconv=fused_modconv)
act_gain = self.act_gain * gain
act_clamp = (self.conv_clamp *
gain if self.conv_clamp is not None else None)
x = bias_act.bias_act(x,
self.bias.to(x.dtype),
act=act,
gain=act_gain,
clamp=act_clamp)
else:
if x.ndim == 2: # MLP mode
x = F.relu(F.linear(x, self.weight, self.bias.to(x.dtype)))
else:
x = F.relu(
F.conv2d(x, self.weight[:, :, None, None], self.bias))
return x