BerfScene / models /stylegan2_discriminator.py
3v324v23's picture
init
2f85de4
# python3.7
"""Contains the implementation of discriminator described in StyleGAN2.
Compared to that of StyleGAN, the discriminator in StyleGAN2 mainly adds skip
connections, increases model size and disables progressive growth. This script
ONLY supports config F in the original paper.
Paper: https://arxiv.org/pdf/1912.04958.pdf
Official TensorFlow implementation: https://github.com/NVlabs/stylegan2
"""
import numpy as np
import torch
import torch.nn as nn
from third_party.stylegan2_official_ops import bias_act
from third_party.stylegan2_official_ops import upfirdn2d
from third_party.stylegan2_official_ops import conv2d_gradfix
__all__ = ['StyleGAN2Discriminator']
# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]
# Architectures allowed.
_ARCHITECTURES_ALLOWED = ['resnet', 'skip', 'origin']
# pylint: disable=missing-function-docstring
class StyleGAN2Discriminator(nn.Module):
"""Defines the discriminator network in StyleGAN2.
NOTE: The discriminator takes images with `RGB` channel order and pixel
range [-1, 1] as inputs.
Settings for the backbone:
(1) resolution: The resolution of the input image. (default: -1)
(2) init_res: Smallest resolution of the convolutional backbone.
(default: 4)
(3) image_channels: Number of channels of the input image. (default: 3)
(4) architecture: Type of architecture. Support `origin`, `skip`, and
`resnet`. (default: `resnet`)
(5) use_wscale: Whether to use weight scaling. (default: True)
(6) wscale_gain: The factor to control weight scaling. (default: 1.0)
(7) lr_mul: Learning rate multiplier for backbone. (default: 1.0)
(8) mbstd_groups: Group size for the minibatch standard deviation layer.
`0` means disable. (default: 4)
(9) mbstd_channels: Number of new channels (appended to the original feature
map) after the minibatch standard deviation layer. (default: 1)
(10) fmaps_base: Factor to control number of feature maps for each layer.
(default: 32 << 10)
(11) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
(12) filter_kernel: Kernel used for filtering (e.g., downsampling).
(default: (1, 3, 3, 1))
(13) conv_clamp: A threshold to clamp the output of convolution layers to
avoid overflow under FP16 training. (default: None)
(14) eps: A small value to avoid divide overflow. (default: 1e-8)
Settings for conditional model:
(1) label_dim: Dimension of the additional label for conditional generation.
In one-hot conditioning case, it is equal to the number of classes. If
set to 0, conditioning training will be disabled. (default: 0)
(2) embedding_dim: Dimension of the embedding space, if needed.
(default: 512)
(3) embedding_bias: Whether to add bias to embedding learning.
(default: True)
(4) embedding_use_wscale: Whether to use weight scaling for embedding
learning. (default: True)
(5) embedding_lr_mul: Learning rate multiplier for the embedding learning.
(default: 1.0)
(6) normalize_embedding: Whether to normalize the embedding. (default: True)
(7) mapping_layers: Number of layers of the additional mapping network after
embedding. (default: 0)
(8) mapping_fmaps: Number of hidden channels of the additional mapping
network after embedding. (default: 512)
(9) mapping_use_wscale: Whether to use weight scaling for the additional
mapping network. (default: True)
(10) mapping_lr_mul: Learning rate multiplier for the additional mapping
network after embedding. (default: 0.1)
Runtime settings:
(1) fp16_res: Layers at resolution higher than (or equal to) this field will
use `float16` precision for computation. This is merely used for
acceleration. If set as `None`, all layers will use `float32` by
default. (default: None)
(2) impl: Implementation mode of some particular ops, e.g., `filtering`,
`bias_act`, etc. `cuda` means using the official CUDA implementation
from StyleGAN2, while `ref` means using the native PyTorch ops.
(default: `cuda`)
"""
def __init__(self,
# Settings for backbone.
resolution=-1,
init_res=4,
image_channels=3,
architecture='resnet',
use_wscale=True,
wscale_gain=1.0,
lr_mul=1.0,
mbstd_groups=4,
mbstd_channels=1,
fmaps_base=32 << 10,
fmaps_max=512,
filter_kernel=(1, 3, 3, 1),
conv_clamp=None,
eps=1e-8,
# Settings for conditional model.
label_dim=0,
embedding_dim=512,
embedding_bias=True,
embedding_use_wscale=True,
embedding_lr_mul=1.0,
normalize_embedding=True,
mapping_layers=0,
mapping_fmaps=512,
mapping_use_wscale=True,
mapping_lr_mul=0.1):
"""Initializes with basic settings.
Raises:
ValueError: If the `resolution` is not supported, or `architecture`
is not supported.
"""
super().__init__()
if resolution not in _RESOLUTIONS_ALLOWED:
raise ValueError(f'Invalid resolution: `{resolution}`!\n'
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
architecture = architecture.lower()
if architecture not in _ARCHITECTURES_ALLOWED:
raise ValueError(f'Invalid architecture: `{architecture}`!\n'
f'Architectures allowed: '
f'{_ARCHITECTURES_ALLOWED}.')
self.init_res = init_res
self.init_res_log2 = int(np.log2(init_res))
self.resolution = resolution
self.final_res_log2 = int(np.log2(resolution))
self.image_channels = image_channels
self.architecture = architecture
self.use_wscale = use_wscale
self.wscale_gain = wscale_gain
self.lr_mul = lr_mul
self.mbstd_groups = mbstd_groups
self.mbstd_channels = mbstd_channels
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.filter_kernel = filter_kernel
self.conv_clamp = conv_clamp
self.eps = eps
self.label_dim = label_dim
self.embedding_dim = embedding_dim
self.embedding_bias = embedding_bias
self.embedding_use_wscale = embedding_use_wscale
self.embedding_lr_mul = embedding_lr_mul
self.normalize_embedding = normalize_embedding
self.mapping_layers = mapping_layers
self.mapping_fmaps = mapping_fmaps
self.mapping_use_wscale = mapping_use_wscale
self.mapping_lr_mul = mapping_lr_mul
self.pth_to_tf_var_mapping = {}
# Embedding for conditional discrimination.
self.use_embedding = label_dim > 0 and embedding_dim > 0
if self.use_embedding:
self.embedding = DenseLayer(in_channels=label_dim,
out_channels=embedding_dim,
add_bias=embedding_bias,
init_bias=0.0,
use_wscale=embedding_use_wscale,
wscale_gain=wscale_gain,
lr_mul=embedding_lr_mul,
activation_type='linear')
self.pth_to_tf_var_mapping['embedding.weight'] = 'LabelEmbed/weight'
if self.embedding_bias:
self.pth_to_tf_var_mapping['embedding.bias'] = 'LabelEmbed/bias'
if self.normalize_embedding:
self.norm = PixelNormLayer(dim=1, eps=eps)
for i in range(mapping_layers):
in_channels = (embedding_dim if i == 0 else mapping_fmaps)
out_channels = (embedding_dim if i == (mapping_layers - 1) else
mapping_fmaps)
layer_name = f'mapping{i}'
self.add_module(layer_name,
DenseLayer(in_channels=in_channels,
out_channels=out_channels,
add_bias=True,
init_bias=0.0,
use_wscale=mapping_use_wscale,
wscale_gain=wscale_gain,
lr_mul=mapping_lr_mul,
activation_type='lrelu'))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'Mapping{i}/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'Mapping{i}/bias')
# Convolutional backbone.
for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1):
res = 2 ** res_log2
in_channels = self.get_nf(res)
out_channels = self.get_nf(res // 2)
block_idx = self.final_res_log2 - res_log2
# Input convolution layer for each resolution (if needed).
if res_log2 == self.final_res_log2 or self.architecture == 'skip':
layer_name = f'input{block_idx}'
self.add_module(layer_name,
ConvLayer(in_channels=image_channels,
out_channels=in_channels,
kernel_size=1,
add_bias=True,
scale_factor=1,
filter_kernel=None,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu',
conv_clamp=conv_clamp))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/FromRGB/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/FromRGB/bias')
# Convolution block for each resolution (except the last one).
if res != self.init_res:
# First layer (kernel 3x3) without downsampling.
layer_name = f'layer{2 * block_idx}'
self.add_module(layer_name,
ConvLayer(in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
add_bias=True,
scale_factor=1,
filter_kernel=None,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu',
conv_clamp=conv_clamp))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Conv0/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Conv0/bias')
# Second layer (kernel 3x3) with downsampling
layer_name = f'layer{2 * block_idx + 1}'
self.add_module(layer_name,
ConvLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
add_bias=True,
scale_factor=2,
filter_kernel=filter_kernel,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu',
conv_clamp=conv_clamp))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Conv1_down/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Conv1_down/bias')
# Residual branch (kernel 1x1) with downsampling, without bias,
# with linear activation.
if self.architecture == 'resnet':
layer_name = f'residual{block_idx}'
self.add_module(layer_name,
ConvLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
add_bias=False,
scale_factor=2,
filter_kernel=filter_kernel,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='linear',
conv_clamp=None))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Skip/weight')
# Convolution block for last resolution.
else:
self.mbstd = MiniBatchSTDLayer(
groups=mbstd_groups, new_channels=mbstd_channels, eps=eps)
# First layer (kernel 3x3) without downsampling.
layer_name = f'layer{2 * block_idx}'
self.add_module(
layer_name,
ConvLayer(in_channels=in_channels + mbstd_channels,
out_channels=in_channels,
kernel_size=3,
add_bias=True,
scale_factor=1,
filter_kernel=None,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu',
conv_clamp=conv_clamp))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Conv/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Conv/bias')
# Second layer, as a fully-connected layer.
layer_name = f'layer{2 * block_idx + 1}'
self.add_module(layer_name,
DenseLayer(in_channels=in_channels * res * res,
out_channels=in_channels,
add_bias=True,
init_bias=0.0,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu'))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Dense0/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Dense0/bias')
# Final dense layer to output score.
self.output = DenseLayer(in_channels=in_channels,
out_channels=(embedding_dim
if self.use_embedding
else max(label_dim, 1)),
add_bias=True,
init_bias=0.0,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='linear')
self.pth_to_tf_var_mapping['output.weight'] = 'Output/weight'
self.pth_to_tf_var_mapping['output.bias'] = 'Output/bias'
# Used for downsampling input image for `skip` architecture.
if self.architecture == 'skip':
self.register_buffer(
'filter', upfirdn2d.setup_filter(filter_kernel))
def get_nf(self, res):
"""Gets number of feature maps according to the given resolution."""
return min(self.fmaps_base // res, self.fmaps_max)
def forward(self, image, label=None, fp16_res=None, impl='cuda'):
# Check shape.
expected_shape = (self.image_channels, self.resolution, self.resolution)
if image.ndim != 4 or image.shape[1:] != expected_shape:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, channel, height, width], where '
f'`channel` equals to {self.image_channels}, '
f'`height`, `width` equal to {self.resolution}!\n'
f'But `{image.shape}` is received!')
if self.label_dim > 0:
if label is None:
raise ValueError(f'Model requires an additional label '
f'(with dimension {self.label_dim}) as input, '
f'but no label is received!')
batch_size = image.shape[0]
if label.ndim != 2 or label.shape != (batch_size, self.label_dim):
raise ValueError(f'Input label should be with shape '
f'[batch_size, label_dim], where '
f'`batch_size` equals to that of '
f'images ({image.shape[0]}) and '
f'`label_dim` equals to {self.label_dim}!\n'
f'But `{label.shape}` is received!')
label = label.to(dtype=torch.float32)
if self.use_embedding:
embed = self.embedding(label, impl=impl)
if self.normalize_embedding:
embed = self.norm(embed)
for i in range(self.mapping_layers):
embed = getattr(self, f'mapping{i}')(embed, impl=impl)
# Cast to `torch.float16` if needed.
if fp16_res is not None and self.resolution >= fp16_res:
image = image.to(torch.float16)
x = self.input0(image, impl=impl)
for res_log2 in range(self.final_res_log2, self.init_res_log2, -1):
res = 2 ** res_log2
# Cast to `torch.float16` if needed.
if fp16_res is not None and res >= fp16_res:
x = x.to(torch.float16)
else:
x = x.to(torch.float32)
idx = self.final_res_log2 - res_log2 # Block index
if self.architecture == 'skip' and idx > 0:
image = upfirdn2d.downsample2d(image, self.filter, impl=impl)
# Cast to `torch.float16` if needed.
if fp16_res is not None and res >= fp16_res:
image = image.to(torch.float16)
else:
image = image.to(torch.float32)
y = getattr(self, f'input{idx}')(image, impl=impl)
x = x + y
if self.architecture == 'resnet':
residual = getattr(self, f'residual{idx}')(
x, runtime_gain=np.sqrt(0.5), impl=impl)
x = getattr(self, f'layer{2 * idx}')(x, impl=impl)
x = getattr(self, f'layer{2 * idx + 1}')(
x, runtime_gain=np.sqrt(0.5), impl=impl)
x = x + residual
else:
x = getattr(self, f'layer{2 * idx}')(x, impl=impl)
x = getattr(self, f'layer{2 * idx + 1}')(x, impl=impl)
# Final output.
idx += 1
if fp16_res is not None: # Always use FP32 for the last block.
x = x.to(torch.float32)
if self.architecture == 'skip':
image = upfirdn2d.downsample2d(image, self.filter, impl=impl)
if fp16_res is not None: # Always use FP32 for the last block.
image = image.to(torch.float32)
y = getattr(self, f'input{idx}')(image, impl=impl)
x = x + y
x = self.mbstd(x)
x = getattr(self, f'layer{2 * idx}')(x, impl=impl)
x = getattr(self, f'layer{2 * idx + 1}')(x, impl=impl)
x = self.output(x, impl=impl)
if self.use_embedding:
x = (x * embed).sum(dim=1, keepdim=True)
x = x / np.sqrt(self.embedding_dim)
elif self.label_dim > 0:
x = (x * label).sum(dim=1, keepdim=True)
results = {
'score': x,
'label': label
}
if self.use_embedding:
results['embedding'] = embed
return results
class PixelNormLayer(nn.Module):
"""Implements pixel-wise feature vector normalization layer."""
def __init__(self, dim, eps):
super().__init__()
self.dim = dim
self.eps = eps
def extra_repr(self):
return f'dim={self.dim}, epsilon={self.eps}'
def forward(self, x):
scale = (x.square().mean(dim=self.dim, keepdim=True) + self.eps).rsqrt()
return x * scale
class MiniBatchSTDLayer(nn.Module):
"""Implements the minibatch standard deviation layer."""
def __init__(self, groups, new_channels, eps):
super().__init__()
self.groups = groups
self.new_channels = new_channels
self.eps = eps
def extra_repr(self):
return (f'groups={self.groups}, '
f'new_channels={self.new_channels}, '
f'epsilon={self.eps}')
def forward(self, x):
if self.groups <= 1 or self.new_channels < 1:
return x
dtype = x.dtype
N, C, H, W = x.shape
G = min(self.groups, N) # Number of groups.
nC = self.new_channels # Number of channel groups.
c = C // nC # Channels per channel group.
y = x.reshape(G, -1, nC, c, H, W) # [GnFcHW]
y = y - y.mean(dim=0) # [GnFcHW]
y = y.square().mean(dim=0) # [nFcHW]
y = (y + self.eps).sqrt() # [nFcHW]
y = y.mean(dim=(2, 3, 4)) # [nF]
y = y.reshape(-1, nC, 1, 1) # [nF11]
y = y.repeat(G, 1, H, W) # [NFHW]
x = torch.cat((x, y), dim=1) # [N(C+F)HW]
assert x.dtype == dtype
return x
class ConvLayer(nn.Module):
"""Implements the convolutional layer.
If downsampling is needed (i.e., `scale_factor = 2`), the feature map will
be filtered with `filter_kernel` first.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
add_bias,
scale_factor,
filter_kernel,
use_wscale,
wscale_gain,
lr_mul,
activation_type,
conv_clamp):
"""Initializes with layer settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
kernel_size: Size of the convolutional kernels.
add_bias: Whether to add bias onto the convolutional result.
scale_factor: Scale factor for downsampling. `1` means skip
downsampling.
filter_kernel: Kernel used for filtering.
use_wscale: Whether to use weight scaling.
wscale_gain: Gain factor for weight scaling.
lr_mul: Learning multiplier for both weight and bias.
activation_type: Type of activation.
conv_clamp: A threshold to clamp the output of convolution layers to
avoid overflow under FP16 training.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.add_bias = add_bias
self.scale_factor = scale_factor
self.filter_kernel = filter_kernel
self.use_wscale = use_wscale
self.wscale_gain = wscale_gain
self.lr_mul = lr_mul
self.activation_type = activation_type
self.conv_clamp = conv_clamp
weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
fan_in = kernel_size * kernel_size * in_channels
wscale = wscale_gain / np.sqrt(fan_in)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
if add_bias:
self.bias = nn.Parameter(torch.zeros(out_channels))
self.bscale = lr_mul
else:
self.bias = None
self.act_gain = bias_act.activation_funcs[activation_type].def_gain
if scale_factor > 1:
assert filter_kernel is not None
self.register_buffer(
'filter', upfirdn2d.setup_filter(filter_kernel))
fh, fw = self.filter.shape
self.filter_padding = (
kernel_size // 2 + (fw - scale_factor + 1) // 2,
kernel_size // 2 + (fw - scale_factor) // 2,
kernel_size // 2 + (fh - scale_factor + 1) // 2,
kernel_size // 2 + (fh - scale_factor) // 2)
def extra_repr(self):
return (f'in_ch={self.in_channels}, '
f'out_ch={self.out_channels}, '
f'ksize={self.kernel_size}, '
f'wscale_gain={self.wscale_gain:.3f}, '
f'bias={self.add_bias}, '
f'lr_mul={self.lr_mul:.3f}, '
f'downsample={self.scale_factor}, '
f'downsample_filter={self.filter_kernel}, '
f'act={self.activation_type}, '
f'clamp={self.conv_clamp}')
def forward(self, x, runtime_gain=1.0, impl='cuda'):
dtype = x.dtype
weight = self.weight
if self.wscale != 1.0:
weight = weight * self.wscale
bias = None
if self.bias is not None:
bias = self.bias.to(dtype)
if self.bscale != 1.0:
bias = bias * self.bscale
if self.scale_factor == 1: # Native convolution without downsampling.
padding = self.kernel_size // 2
x = conv2d_gradfix.conv2d(
x, weight.to(dtype), stride=1, padding=padding, impl=impl)
else: # Convolution with downsampling.
down = self.scale_factor
f = self.filter
padding = self.filter_padding
# When kernel size = 1, use filtering function for downsampling.
if self.kernel_size == 1:
x = upfirdn2d.upfirdn2d(
x, f, down=down, padding=padding, impl=impl)
x = conv2d_gradfix.conv2d(
x, weight.to(dtype), stride=1, padding=0, impl=impl)
# When kernel size != 1, use stride convolution for downsampling.
else:
x = upfirdn2d.upfirdn2d(
x, f, down=1, padding=padding, impl=impl)
x = conv2d_gradfix.conv2d(
x, weight.to(dtype), stride=down, padding=0, impl=impl)
act_gain = self.act_gain * runtime_gain
act_clamp = None
if self.conv_clamp is not None:
act_clamp = self.conv_clamp * runtime_gain
x = bias_act.bias_act(x, bias,
act=self.activation_type,
gain=act_gain,
clamp=act_clamp,
impl=impl)
assert x.dtype == dtype
return x
class DenseLayer(nn.Module):
"""Implements the dense layer."""
def __init__(self,
in_channels,
out_channels,
add_bias,
init_bias,
use_wscale,
wscale_gain,
lr_mul,
activation_type):
"""Initializes with layer settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
add_bias: Whether to add bias onto the fully-connected result.
init_bias: The initial bias value before training.
use_wscale: Whether to use weight scaling.
wscale_gain: Gain factor for weight scaling.
lr_mul: Learning multiplier for both weight and bias.
activation_type: Type of activation.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.add_bias = add_bias
self.init_bias = init_bias
self.use_wscale = use_wscale
self.wscale_gain = wscale_gain
self.lr_mul = lr_mul
self.activation_type = activation_type
weight_shape = (out_channels, in_channels)
wscale = wscale_gain / np.sqrt(in_channels)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
if add_bias:
init_bias = np.float32(init_bias) / lr_mul
self.bias = nn.Parameter(torch.full([out_channels], init_bias))
self.bscale = lr_mul
else:
self.bias = None
def extra_repr(self):
return (f'in_ch={self.in_channels}, '
f'out_ch={self.out_channels}, '
f'wscale_gain={self.wscale_gain:.3f}, '
f'bias={self.add_bias}, '
f'init_bias={self.init_bias}, '
f'lr_mul={self.lr_mul:.3f}, '
f'act={self.activation_type}')
def forward(self, x, impl='cuda'):
dtype = x.dtype
if x.ndim != 2:
x = x.flatten(start_dim=1)
weight = self.weight.to(dtype) * self.wscale
bias = None
if self.bias is not None:
bias = self.bias.to(dtype)
if self.bscale != 1.0:
bias = bias * self.bscale
# Fast pass for linear activation.
if self.activation_type == 'linear' and bias is not None:
x = torch.addmm(bias.unsqueeze(0), x, weight.t())
else:
x = x.matmul(weight.t())
x = bias_act.bias_act(x, bias, act=self.activation_type, impl=impl)
assert x.dtype == dtype
return x
# pylint: enable=missing-function-docstring