3v324v23's picture
init
2f85de4
# python3.8
"""Contains image renderer class."""
import torch
import torch.nn as nn
from .point_sampler import PointSampler
from .integrator import Integrator
__all__ = ['Renderer']
class Renderer(nn.Module):
"""Defines the class to render images.
The renderer is a module that takes in latent codes and points, decides
where to sample along each ray, and computes pixel colors/features using the
volume rendering equation.
Basically, the volume rendering pipiline consists of the following steps:
1. Sample points in 3D Space.
2. (Optional) Get the reference representation by injecting latent codes
into the reference representation generator. Generally, the reference
representation can be a feature volume (VolumenGAN), a triplane (EG3D) or
others.
3. Get the corresponding feature of each sampled point by the given feature
extractor. Typically, the overall formulation is:
feat = F(wp, points, options, ref_representation, post_module)
where
`feat`: The output points' features.
`F`: The feature extractor.
`wp`: The latent codes in W-sapce.
`points`: Sampled points.
`options`: Some options for rendering.
`ref_representation`: The reference representation obtained in step 2.
`post_module`: The post module, is usually a MLP.
4. Get the sigma's and rgb's value (or feature) by feeding `feat` in
step 3 into one or two fully-connected layer head.
5. Coarse pass to do the integration.
6. Hierarchically sample points on top of step 5.
6. Fine pass to do the integration.
Note: In the following scripts, meanings of variables `N, H, W, R, K, C` are:
- `N`: Batch size.
- `H`: Height of image.
- `W`: Width of image.
- `R`: Number of rays, usually equals `H * W`.
- `K`: Number of points on each ray.
- `C`: Number of channels w.r.t. features or images, e.t.c.
"""
def __init__(self):
super().__init__()
self.point_sampler = PointSampler()
self.integrator = Integrator()
def forward(
self,
wp,
feature_extractor,
rendering_options,
cam2world_matrix=None,
position_encoder=None,
ref_representation=None,
post_module=None,
post_module_kwargs={},
fc_head=None,
fc_head_kwargs={},
):
#TODO: Organize `rendering_options` like the following format:
'''
rendering_options = dict(
point_sampler_options=dict(
focal=None,
...
)
integrator_options=dict(...),
....,
xxx=xxx, # some public parameters.
...
)
'''
batch_size= wp.shape[0]
# Sample points.
sampling_point_res = self.point_sampler(
batch_size=batch_size,
focal=rendering_options.get('focal', None),
image_boundary_value=rendering_options.get('image_boundary_value',
0.5),
cam_look_at_dir=rendering_options.get('cam_look_at_dir', +1),
pixel_center=rendering_options.get('pixel_center', True),
y_descending=rendering_options.get('y_descending', False),
image_size=rendering_options.get('resolution', 64),
dis_min=rendering_options.get('ray_start', None),
dis_max=rendering_options.get('ray_end', None),
cam2world_matrix=cam2world_matrix,
num_points=rendering_options.get('depth_resolution', 48),
perturbation_strategy=rendering_options.get(
'perturbation_strategy', 'uniform'),
radius_strategy=rendering_options.get('radius_strategy', None),
radius_fix=rendering_options.get('radius_fix', None),
polar_strategy=rendering_options.get('polar_strategy', None),
polar_fix=rendering_options.get('polar_fix', None),
polar_mean=rendering_options.get('polar_mean', None),
polar_stddev=rendering_options.get('polar_stddev', None),
azimuthal_strategy=rendering_options.get('azimuthal_strategy',
None),
azimuthal_fix=rendering_options.get('azimuthal_fix', None),
azimuthal_mean=rendering_options.get('azimuthal_mean', None),
azimuthal_stddev=rendering_options.get('azimuthal_stddev', None),
fov=rendering_options.get('fov', 30),
)
points = sampling_point_res['points_world'] # [N, H, W, K, 3]
ray_dirs = sampling_point_res['rays_world'] # [N, H, W, 3]
ray_origins = sampling_point_res['ray_origins_world'] # [N, H, W, 3]
z_coarse = sampling_point_res['radii'] # [N, H, W, K]
# NOTE: `pitch` is used to stand for `polar` in other code.
camera_polar = sampling_point_res['camera_polar'] # [N]
# NOTE: `yaw` is used to stand for `azimuthal` in other code.
camera_azimuthal = sampling_point_res['camera_azimuthal'] # [N]
if camera_polar is not None:
camera_polar = camera_polar.unsqueeze(-1)
if camera_azimuthal is not None:
camera_azimuthal = camera_azimuthal.unsqueeze(-1)
# Reshape.
N, H, W, K, _ = points.shape
assert N == batch_size
R = H * W # number of rays
points = points.reshape(N, R, K, -1)
ray_dirs = ray_dirs.reshape(N, R, -1)
ray_origins = ray_origins.reshape(N, R, -1)
z_coarse = z_coarse.reshape(N, R, K, -1)
out = self.get_sigma_rgb(wp,
points,
feature_extractor,
rendering_options=rendering_options,
position_encoder=position_encoder,
ref_representation=ref_representation,
post_module=post_module,
post_module_kwargs=post_module_kwargs,
fc_head=fc_head,
fc_head_kwargs=dict(**fc_head_kwargs,
wp=wp),
ray_dirs=ray_dirs,
cam_matrix=cam2world_matrix)
sigmas_coarse = out['sigma'] # [N, H * W * K, 1]
rgbs_coarse = out['rgb'] # [N, H * W * K, C]
sigmas_coarse = sigmas_coarse.reshape(N, R, K,
sigmas_coarse.shape[-1])
rgbs_coarse = rgbs_coarse.reshape(N, R, K, rgbs_coarse.shape[-1])
# Do the integration.
N_importance = rendering_options.get('depth_resolution_importance', 0)
if N_importance > 0:
# Do the integration in coarse pass.
rendering_result = self.integrator(rgbs_coarse, sigmas_coarse,
z_coarse, rendering_options)
weights = rendering_result['weights']
# Importrance sampling.
z_fine = self.sample_importance(
z_coarse,
weights,
N_importance,
smooth_weights=rendering_options.get('smooth_weights', True))
points = ray_origins.unsqueeze(-2) + z_fine * ray_dirs.unsqueeze(-2)
# Get sigma's and rgb's value (or feature).
out = self.get_sigma_rgb(wp,
points,
feature_extractor,
rendering_options=rendering_options,
position_encoder=position_encoder,
ref_representation=ref_representation,
post_module=post_module,
post_module_kwargs=post_module_kwargs,
fc_head=fc_head,
fc_head_kwargs=dict(**fc_head_kwargs,
wp=wp),
ray_dirs=ray_dirs,
cam_matrix=cam2world_matrix)
sigmas_fine = out['sigma']
rgbs_fine = out['rgb']
sigmas_fine = sigmas_fine.reshape(N, R, N_importance,
sigmas_fine.shape[-1])
rgbs_fine = rgbs_fine.reshape(N, R, N_importance,
rgbs_fine.shape[-1])
# Gather coarse and fine results.
all_zs, all_rgbs, all_sigmas = self.unify_samples(
z_coarse, rgbs_coarse, sigmas_coarse,
z_fine, rgbs_fine, sigmas_fine)
# Do the integration in fine pass.
final_rendering_result = self.integrator(
all_rgbs, all_sigmas, all_zs, rendering_options)
else:
final_rendering_result = self.integrator(
rgbs_coarse, sigmas_coarse, z_coarse, rendering_options)
return {
**final_rendering_result,
**{
'camera_azimuthal': camera_azimuthal,
'camera_polar': camera_polar
},
**{
'points': points,
'sigmas': sigmas_fine,
}
}
def get_sigma_rgb(self,
wp,
points,
feature_extractor,
rendering_options,
position_encoder=None,
ref_representation=None,
post_module=None,
post_module_kwargs={},
fc_head=None,
fc_head_kwargs={},
ray_dirs=None,
cam_matrix=None):
# Get point feature in coarse pass.
point_features = feature_extractor(wp, points, rendering_options,
position_encoder,
ref_representation, post_module,
post_module_kwargs, ray_dirs, cam_matrix)
# Get sigma's and rgb's value (or feature).
if ray_dirs.ndim != points.ndim:
ray_dirs = ray_dirs.unsqueeze(-2).expand_as(points)
ray_dirs = ray_dirs.reshape(ray_dirs.shape[0], -1, ray_dirs.shape[-1])
# with shape [N, R * K, 3]
out = fc_head(point_features, dirs=ray_dirs, **fc_head_kwargs)
if rendering_options.get('noise_std', 0) > 0:
out['sigma'] = out['sigma'] + torch.randn_like(
out['sigma']) * rendering_options['noise_std']
return out
def unify_samples(self, depths1, rgbs1, sigmas1, depths2, rgbs2, sigmas2):
all_depths = torch.cat([depths1, depths2], dim=-2)
all_colors = torch.cat([rgbs1, rgbs2], dim=-2)
all_densities = torch.cat([sigmas1, sigmas2], dim=-2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(
all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2,
indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def sample_importance(self,
z_vals,
weights,
N_importance,
smooth_weights=False):
""" Implements NeRF importance sampling.
Returns:
importance_z_vals: Depths of importance sampled points along rays.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) + 1e-5
# smooth weights
if smooth_weights:
weights = torch.nn.functional.max_pool1d(
weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2,
1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[:, :-1] + z_vals[:, 1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance).detach().reshape(
batch_size, num_rays,
N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""Sample `N_importance` samples from `bins` with distribution defined
by `weights`.
Args:
bins: (N_rays, N_samples_+1) where N_samples_ is the number of
coarse samples per ray - 2
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Returns:
samples: the sampled samples
Source:
https://github.com/kwea123/nerf_pl/blob/master/models/rendering.py
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps
# prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1,
keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples),
# cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf],
-1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u)
below = torch.clamp_min(inds - 1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above],
-1).view(N_rays, 2 * N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled)
cdf_g = cdf_g.view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1,
inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[..., 1] - cdf_g[..., 0]
denom[denom < eps] = 1 # denom equals 0 means a bin has weight 0,
# in which case it will not be sampled
# anyway, therefore any value for it is fine
# (set to 1 here)
samples = (bins_g[..., 0] + (u - cdf_g[..., 0]) /
denom * (bins_g[..., 1] - bins_g[..., 0]))
return samples