qbwmwsap's picture
Update app.py
ed81850 verified
raw
history blame
876 Bytes
import streamlit as st
# from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import LlamaTokenizer, LlamaForCausalLM
# Load your model here
# tokenizer = AutoTokenizer.from_pretrained("qbwmwsap/amber-model-mine")
# model = AutoModelForCausalLM.from_pretrained("qbwmwsap/amber-model-mine")
# Load original amber model
tokenizer = LlamaTokenizer.from_pretrained("LLM360/Amber", revision="ckpt_356")
model = LlamaForCausalLM.from_pretrained("LLM360/Amber", revision="ckpt_356")
st.title('Amber-Model-Mine')
text = st.text_input('Enter some text')
if text:
# Preprocess your data here
input_ids = tokenizer(text, return_tensors="pt").input_ids
# Run the model and get the output
outputs = model.generate(input_ids)
# Postprocess your output here if necessary
output = tokenizer.decode(outputs[0])
st.write(output)