bark / bark_infinity /api_in_dev.py
jamalsenouci's picture
Upload folder using huggingface_hub
c6919c4
from typing import Dict, Optional, Union
import numpy as np
from .generation import codec_decode, generate_coarse, generate_fine, generate_text_semantic, SAMPLE_RATE
from .config import logger, console, console_file, get_default_values, load_all_defaults, VALID_HISTORY_PROMPT_DIRS
from scipy.io.wavfile import write as write_wav
import copy
## ADDED
import os
import re
import datetime
import random
import time
from bark_infinity import generation
from pathvalidate import sanitize_filename, sanitize_filepath
from rich.pretty import pprint
from rich.table import Table
from collections import defaultdict
from tqdm import tqdm
from bark_infinity import text_processing
global gradio_try_to_cancel
global done_cancelling
gradio_try_to_cancel = False
done_cancelling = False
def text_to_semantic(
text: str,
history_prompt: Optional[Union[Dict, str]] = None,
temp: float = 0.7,
silent: bool = False,
):
"""Generate semantic array from text.
Args:
text: text to be turned into audio
history_prompt: history choice for audio cloning
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
silent: disable progress bar
Returns:
numpy semantic array to be fed into `semantic_to_waveform`
"""
x_semantic = generate_text_semantic(
text,
history_prompt=history_prompt,
temp=temp,
silent=silent,
use_kv_caching=True
)
return x_semantic
def semantic_to_waveform(
semantic_tokens: np.ndarray,
history_prompt: Optional[Union[Dict, str]] = None,
temp: float = 0.7,
silent: bool = False,
output_full: bool = False,
):
"""Generate audio array from semantic input.
Args:
semantic_tokens: semantic token output from `text_to_semantic`
history_prompt: history choice for audio cloning
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
silent: disable progress bar
output_full: return full generation to be used as a history prompt
Returns:
numpy audio array at sample frequency 24khz
"""
coarse_tokens = generate_coarse(
semantic_tokens,
history_prompt=history_prompt,
temp=temp,
silent=silent,
use_kv_caching=True
)
bark_coarse_tokens = coarse_tokens
fine_tokens = generate_fine(
coarse_tokens,
history_prompt=history_prompt,
temp=0.5,
)
bark_fine_tokens = fine_tokens
audio_arr = codec_decode(fine_tokens)
if output_full:
full_generation = {
"semantic_prompt": semantic_tokens,
"coarse_prompt": coarse_tokens,
"fine_prompt": fine_tokens,
}
return full_generation, audio_arr
return audio_arr
def save_as_prompt(filepath, full_generation):
assert(filepath.endswith(".npz"))
assert(isinstance(full_generation, dict))
assert("semantic_prompt" in full_generation)
assert("coarse_prompt" in full_generation)
assert("fine_prompt" in full_generation)
np.savez(filepath, **full_generation)
def generate_audio(
text: str,
history_prompt: Optional[Union[Dict, str]] = None,
text_temp: float = 0.7,
waveform_temp: float = 0.7,
silent: bool = False,
output_full: bool = False,
):
"""Generate audio array from input text.
Args:
text: text to be turned into audio
history_prompt: history choice for audio cloning
text_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
waveform_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
silent: disable progress bar
output_full: return full generation to be used as a history prompt
Returns:
numpy audio array at sample frequency 24khz
"""
semantic_tokens = text_to_semantic(
text,
history_prompt=history_prompt,
temp=text_temp,
silent=silent,
)
out = semantic_to_waveform(
semantic_tokens,
history_prompt=history_prompt,
temp=waveform_temp,
silent=silent,
output_full=output_full,
)
if output_full:
full_generation, audio_arr = out
return full_generation, audio_arr
else:
audio_arr = out
return audio_arr
## ADDED BELOW
def process_history_prompt(user_history_prompt):
valid_directories_to_check = VALID_HISTORY_PROMPT_DIRS
if user_history_prompt is None:
return None
file_name, file_extension = os.path.splitext(user_history_prompt)
if not file_extension:
file_extension = '.npz'
full_path = f"{file_name}{file_extension}"
if os.path.dirname(full_path): # Check if a directory is specified
if os.path.exists(full_path):
return full_path
else:
logger.error(f" >> Can't find speaker file at: {full_path}")
else:
for directory in valid_directories_to_check:
full_path_in_dir = os.path.join(directory, f"{file_name}{file_extension}")
if os.path.exists(full_path_in_dir):
return full_path_in_dir
logger.error(f" >>! Can't find speaker file: {full_path} in: {valid_directories_to_check}")
return None
def log_params(log_filepath, **kwargs):
from rich.console import Console
file_console = Console(color_system=None)
with file_console.capture() as capture:
kwargs['history_prompt'] = kwargs.get('history_prompt_string',None)
kwargs['history_prompt_string'] = None
file_console.print(kwargs)
str_output = capture.get()
log_filepath = generate_unique_filepath(log_filepath)
with open(log_filepath, "wt") as log_file:
log_file.write(str_output)
return
def determine_output_filename(special_one_off_path = None, **kwargs):
if special_one_off_path:
return sanitize_filepath(special_one_off_path)
# normally generate a filename
output_dir = kwargs.get('output_dir',None)
output_filename = kwargs.get('output_filename',None)
# TODO: Offer a config for long clips to show only the original starting prompt. I prefer seeing each clip seperately names for easy referencing myself.
text_prompt = kwargs.get('text_prompt',None) or kwargs.get('text',None) or ''
history_prompt = kwargs.get('history_prompt_string',None) or 'random'
text_prompt = text_prompt.strip()
history_prompt = os.path.basename(history_prompt).replace('.npz', '')
# There's a Lot of stuff that passes that sanitize check that we don't want in the filename
text_prompt = re.sub(r' ', '_', text_prompt) # spaces with underscores
# quotes, colons, and semicolons
text_prompt = re.sub(r'[^\w\s]|[:;\'"]', '', text_prompt)
text_prompt = re.sub(r'[\U00010000-\U0010ffff]', '',
text_prompt, flags=re.UNICODE) # Remove emojis
segment_number_text = None
hoarder_mode = kwargs.get('hoarder_mode', False)
if hoarder_mode:
segment_number = kwargs.get("segment_number")
if segment_number and kwargs.get("total_segments", 1) > 1:
segment_number_text = f"{str(segment_number).zfill(3)}_"
if output_filename:
base_output_filename = f"{output_filename}"
else:
# didn't seem to add value, ripped out
"""
extra_stats = ''
extra_stats = kwargs.get('extra_stats', False)
if extra_stats:
token_probs_history = kwargs['token_probs_history']
if token_probs_history is not None:
token_probs_history_entropy = average_entropy(token_probs_history)
token_probs_history_perplexity = perplexity(token_probs_history)
token_probs_history_entropy_std = entropy_std(token_probs_history)
extra_stats = f"ent-{token_probs_history_entropy:.2f}_perp-{token_probs_history_perplexity:.2f}_entstd-{token_probs_history_entropy_std:.2f}"
"""
date_str = datetime.datetime.now().strftime("%y-%m%d-%H%M-%S")
truncated_text = text_prompt[:15].strip()
base_output_filename = f"{truncated_text}-SPK-{history_prompt}"
if segment_number_text is not None:
base_output_filename = f"{segment_number_text}{base_output_filename}"
base_output_filename = f"{base_output_filename}.wav"
output_filepath = (
os.path.join(output_dir, base_output_filename))
os.makedirs(output_dir, exist_ok=True)
output_filepath = generate_unique_filepath(output_filepath)
return output_filepath
def write_one_segment(audio_arr = None, full_generation = None, **kwargs):
filepath = determine_output_filename(**kwargs)
#print(f"Looks like filepath is {filepath} is okay?")
if full_generation is not None:
write_seg_npz(filepath, full_generation, **kwargs)
if audio_arr is not None and kwargs.get("segment_number", 1) != "base_history":
write_seg_wav(filepath, audio_arr, **kwargs)
hoarder_mode = kwargs.get('hoarder_mode', False)
dry_run = kwargs.get('dry_run', False)
if hoarder_mode and not dry_run:
log_params(f"{filepath}_info.txt",**kwargs)
def generate_unique_dirpath(dirpath):
unique_dirpath = sanitize_filepath(dirpath)
base_name = os.path.basename(dirpath)
parent_dir = os.path.dirname(dirpath)
counter = 1
while os.path.exists(unique_dirpath):
unique_dirpath = os.path.join(parent_dir, f"{base_name}_{counter}")
counter += 1
return unique_dirpath
def generate_unique_filepath(filepath):
unique_filename = sanitize_filepath(filepath)
name, ext = os.path.splitext(filepath)
counter = 1
while os.path.exists(unique_filename):
unique_filename = os.path.join(f"{name}_{counter}{ext}")
counter += 1
return unique_filename
def write_seg_npz(filepath, full_generation, **kwargs):
#logger.debug(kwargs)
if kwargs.get("segment_number", 1) == "base_history":
filepath = f"{filepath}_initial_prompt.npz"
dry_text = '(dry run)' if kwargs.get('dry_run', False) else ''
if not kwargs.get('dry_run', False) and kwargs.get('always_save_speaker', True):
filepath = generate_unique_filepath(filepath)
np.savez_compressed(filepath, semantic_prompt = full_generation["semantic_prompt"], coarse_prompt = full_generation["coarse_prompt"], fine_prompt = full_generation["fine_prompt"])
logger.info(f" .npz saved to {filepath} {dry_text}")
def write_seg_wav(filepath, audio_arr, **kwargs):
dry_run = kwargs.get('dry_run', False)
dry_text = '(dry run)' if dry_run else ''
if dry_run is not True:
filepath = generate_unique_filepath(filepath)
write_audiofile(filepath, audio_arr)
logger.info(f" .wav saved to {filepath} {dry_text}")
def write_audiofile(output_filepath, audio_arr):
output_filepath = generate_unique_filepath(output_filepath)
write_wav(output_filepath, SAMPLE_RATE, audio_arr)
#sample_rate = 24000
#soundfile.write(output_filepath, audio_arr, sample_rate,format='WAV', subtype='PCM_16')
# print(f"[green] <Wrote {output_filepath}>")
def call_with_non_none_params(func, **kwargs):
non_none_params = {key: value for key, value in kwargs.items() if value is not None}
return func(**non_none_params)
def generate_audio_barki(
text: str,
**kwargs,
):
"""Generate audio array from input text.
Args:
text: text to be turned into audio
history_prompt: history choice for audio cloning
text_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
waveform_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
silent: disable progress bar
output_full: return full generation to be used as a history prompt
Returns:
numpy audio array at sample frequency 24khz
"""
logger.debug(locals())
kwargs = load_all_defaults(**kwargs)
history_prompt = kwargs.get("history_prompt", None)
text_temp = kwargs.get("text_temp", None)
waveform_temp = kwargs.get("waveform_temp", None)
silent = kwargs.get("silent", None)
output_full = kwargs.get("output_full", None)
global gradio_try_to_cancel
global done_cancelling
seed = kwargs.get("seed",None)
if seed is not None:
generation.set_seed(seed)
## Semantic Options
semantic_temp = text_temp
if kwargs.get("semantic_temp", None):
semantic_temp = kwargs.get("semantic_temp")
semantic_seed = kwargs.get("semantic_seed",None)
if semantic_seed is not None:
generation.set_seed(semantic_seed)
if gradio_try_to_cancel:
done_cancelling = True
return None, None
# this has to be bugged? But when I logged generate_text_semantic inputs they were exacttly the same as raw generate audio...
# i must be messning up some values somewhere
semantic_tokens = call_with_non_none_params(
generate_text_semantic,
text=text,
history_prompt=history_prompt,
temp=semantic_temp,
top_k=kwargs.get("semantic_top_k", None),
top_p=kwargs.get("semantic_top_p", None),
silent=silent,
min_eos_p = kwargs.get("semantic_min_eos_p", None),
max_gen_duration_s = kwargs.get("semantic_max_gen_duration_s", None),
allow_early_stop = kwargs.get("semantic_allow_early_stop", True),
use_kv_caching=kwargs.get("semantic_use_kv_caching", True),
)
if gradio_try_to_cancel:
done_cancelling = True
return None, None
## Coarse Options
coarse_temp = waveform_temp
if kwargs.get("coarse_temp", None):
coarse_temp = kwargs.get("coarse_temp")
coarse_seed = kwargs.get("coarse_seed",None)
if coarse_seed is not None:
generation.set_seed(coarse_seed)
if gradio_try_to_cancel:
done_cancelling = True
return None, None
coarse_tokens = call_with_non_none_params(
generate_coarse,
x_semantic=semantic_tokens,
history_prompt=history_prompt,
temp=coarse_temp,
top_k=kwargs.get("coarse_top_k", None),
top_p=kwargs.get("coarse_top_p", None),
silent=silent,
max_coarse_history=kwargs.get("coarse_max_coarse_history", None),
sliding_window_len=kwargs.get("coarse_sliding_window_len", None),
use_kv_caching=kwargs.get("coarse_kv_caching", True),
)
fine_temp = kwargs.get("fine_temp", 0.5)
fine_seed = kwargs.get("fine_seed",None)
if fine_seed is not None:
generation.set_seed(fine_seed)
if gradio_try_to_cancel:
done_cancelling = True
return None, None
fine_tokens = call_with_non_none_params(
generate_fine,
x_coarse_gen=coarse_tokens,
history_prompt=history_prompt,
temp=fine_temp,
silent=silent,
)
if gradio_try_to_cancel:
done_cancelling = True
return None, None
audio_arr = codec_decode(fine_tokens)
full_generation = {
"semantic_prompt": semantic_tokens,
"coarse_prompt": coarse_tokens,
"fine_prompt": fine_tokens,
}
if gradio_try_to_cancel:
done_cancelling = True
return None, None
hoarder_mode = kwargs.get("hoarder_mode", None)
total_segments = kwargs.get("total_segments", 1)
if hoarder_mode and (total_segments > 1):
kwargs["text"] = text
write_one_segment(audio_arr, full_generation, **kwargs)
if output_full:
return full_generation, audio_arr
return audio_arr
def generate_audio_long_from_gradio(**kwargs):
full_generation_segments, audio_arr_segments, final_filename_will_be = [],[],None
full_generation_segments, audio_arr_segments, final_filename_will_be = generate_audio_long(**kwargs)
return full_generation_segments, audio_arr_segments, final_filename_will_be
def generate_audio_long(
**kwargs,
):
global gradio_try_to_cancel
global done_cancelling
kwargs = load_all_defaults(**kwargs)
logger.debug(locals())
history_prompt = None
history_prompt = kwargs.get("history_prompt", None)
kwargs["history_prompt"] = None
silent = kwargs.get("silent", None)
full_generation_segments = []
audio_arr_segments = []
stable_mode_interval = kwargs.get('stable_mode_interval', None)
if stable_mode_interval is None:
stable_mode_interval = 1
if stable_mode_interval < 0:
stable_mode_interval = 0
stable_mode_interval_counter = None
if stable_mode_interval >= 2:
stable_mode_interval_counter = stable_mode_interval
dry_run = kwargs.get('dry_run', False)
text_splits_only = kwargs.get('text_splits_only', False)
if text_splits_only:
dry_run = True
# yanked for now, required too many mods to core Bark code
extra_confused_travolta_mode = kwargs.get('extra_confused_travolta_mode', None)
hoarder_mode = kwargs.get('hoarder_mode', None)
single_starting_seed = kwargs.get("single_starting_seed",None)
if single_starting_seed is not None:
kwargs["seed_return_value"] = generation.set_seed(single_starting_seed)
# the old way of doing this
split_each_text_prompt_by = kwargs.get("split_each_text_prompt_by",None)
split_each_text_prompt_by_value = kwargs.get("split_each_text_prompt_by_value",None)
if split_each_text_prompt_by is not None and split_each_text_prompt_by_value is not None:
audio_segments = chunk_up_text_prev(**kwargs)
else:
audio_segments = chunk_up_text(**kwargs)
if text_splits_only:
print("Nothing was generated, this is just text the splits!")
return None, None, None
history_prompt_for_next_segment = None
base_history = None
if history_prompt is not None:
history_prompt_string = history_prompt
history_prompt = process_history_prompt(history_prompt)
if history_prompt is not None:
base_history = np.load(history_prompt)
base_history = {key: base_history[key] for key in base_history.keys()}
kwargs['history_prompt_string'] = history_prompt_string
history_prompt_for_next_segment = copy.deepcopy(base_history) # just start from a dict for consistency
else:
logger.error(f"Speaker {history_prompt} could not be found, looking in{VALID_HISTORY_PROMPT_DIRS}")
gradio_try_to_cancel = False
done_cancelling = True
return None, None, None
# way too many files, for hoarder_mode every sample is in own dir
if hoarder_mode and len(audio_segments) > 1:
output_dir = kwargs.get('output_dir', "bark_samples")
output_filename_will_be = determine_output_filename(**kwargs)
file_name, file_extension = os.path.splitext(output_filename_will_be)
output_dir_sub = os.path.basename(file_name)
output_dir = os.path.join(output_dir, output_dir_sub)
output_dir = generate_unique_dirpath(output_dir)
kwargs['output_dir'] = output_dir
if hoarder_mode and kwargs.get("history_prompt_string", False):
kwargs['segment_number'] = "base_history"
write_one_segment(audio_arr = None, full_generation = base_history, **kwargs)
full_generation, audio_arr = (None, None)
kwargs["output_full"] = True
kwargs["total_segments"] = len(audio_segments)
for i, segment_text in enumerate(audio_segments):
estimated_time = estimate_spoken_time(segment_text)
print(f"segment_text: {segment_text}")
kwargs["text_prompt"] = segment_text
timeest = f"{estimated_time:.2f}"
if estimated_time > 14 or estimated_time < 3:
timeest = f"[bold red]{estimated_time:.2f}[/bold red]"
current_iteration = str(
kwargs['current_iteration']) if 'current_iteration' in kwargs else ''
output_iterations = kwargs.get('output_iterations', '')
iteration_text = ''
if len(audio_segments) == 1:
iteration_text = f"{current_iteration} of {output_iterations} iterations"
segment_number = i + 1
console.print(f"--Segment {segment_number}/{len(audio_segments)}: est. {timeest}s ({iteration_text})")
#tqdm.write(f"--Segment {segment_number}/{len(audio_segments)}: est. {timeest}s")
#tqdm.set_postfix_str(f"--Segment {segment_number}/{len(audio_segments)}: est. {timeest}s")
if not silent:
print(f"{segment_text}")
kwargs['segment_number'] = segment_number
if dry_run is True:
full_generation, audio_arr = [], []
else:
kwargs['history_prompt'] = history_prompt_for_next_segment
if gradio_try_to_cancel:
done_cancelling = True
print("<<<<Cancelled.>>>>")
return None, None, None
full_generation, audio_arr = generate_audio_barki(text=segment_text, **kwargs)
# if we weren't given a history prompt, save first segment instead
if gradio_try_to_cancel or full_generation is None or audio_arr is None:
# Hmn, cancelling and restarting seems to be a bit buggy
# let's try clearing out stuff
kwargs = {}
history_prompt_for_next_segment = None
base_history = None
full_generation = None
done_cancelling = True
print("<<<<Cancelled.>>>>")
return None, None, None
# we shouldn't need deepcopy but i'm just throwing darts at the bug
if base_history is None:
#print(f"Saving base history for {segment_text}")
base_history = copy.deepcopy(full_generation)
logger.debug(f"stable_mode_interval: {stable_mode_interval_counter} of {stable_mode_interval}")
if stable_mode_interval == 0:
history_prompt_for_next_segment = copy.deepcopy(full_generation)
elif stable_mode_interval == 1:
history_prompt_for_next_segment = copy.deepcopy(base_history)
elif stable_mode_interval >= 2:
if stable_mode_interval_counter == 1:
# reset to base history
stable_mode_interval_counter = stable_mode_interval
history_prompt_for_next_segment = copy.deepcopy(base_history)
logger.info(f"resetting to base history_prompt, again in {stable_mode_interval} chunks")
else:
stable_mode_interval_counter -= 1
history_prompt_for_next_segment = copy.deepcopy(full_generation)
else:
logger.error(f"stable_mode_interval is {stable_mode_interval} and something has gone wrong.")
return None, None, None
full_generation_segments.append(full_generation)
audio_arr_segments.append(audio_arr)
add_silence_between_segments = kwargs.get("add_silence_between_segments", 0.0)
if add_silence_between_segments > 0.0:
silence = np.zeros(int(add_silence_between_segments * SAMPLE_RATE))
audio_arr_segments.append(silence)
if gradio_try_to_cancel:
done_cancelling = True
print("< Cancelled >")
return None, None, None
kwargs['segment_number'] = "final"
final_filename_will_be = determine_output_filename(**kwargs)
dry_run = kwargs.get('dry_run', None)
if not dry_run:
write_one_segment(audio_arr = np.concatenate(audio_arr_segments), full_generation = full_generation_segments[0], **kwargs)
print(f"Saved to {final_filename_will_be}")
return full_generation_segments, audio_arr_segments, final_filename_will_be
def play_superpack_track(superpack_filepath = None, one_random=True):
try:
npz_file = np.load(superpack_filepath)
keys = list(npz_file.keys())
random_key = random.choice(keys)
random_prompt = npz_file[random_key].item()
coarse_tokens = random_prompt["coarse_prompt"]
fine_tokens = generate_fine(coarse_tokens)
audio_arr = codec_decode(fine_tokens)
return audio_arr
except:
return None
def doctor_random_speaker_surgery(npz_filepath, gen_minor_variants=5):
# get directory and filename from npz_filepath
npz_file_directory, npz_filename = os.path.split(npz_filepath)
original_history_prompt = np.load(npz_filepath)
semantic_prompt = original_history_prompt["semantic_prompt"]
original_semantic_prompt = copy.deepcopy(semantic_prompt)
starting_point = 128
starting_point = 64
ending_point = len(original_semantic_prompt) - starting_point
points = np.linspace(starting_point, ending_point, gen_minor_variants)
i = 0
for starting_point in points:
starting_point = int(starting_point)
i += 1
#chop off the front and take thet back, chop off the back and take the front
#is it worth doing something with the middle? nah it's worth doing someting more sophisticated later
new_semantic_from_beginning = copy.deepcopy(original_semantic_prompt[:starting_point].astype(np.int32))
new_semantic_from_ending = copy.deepcopy(original_semantic_prompt[starting_point:].astype(np.int32))
## TODO: port over the good magic from experiments
for semantic_prompt in [new_semantic_from_beginning, new_semantic_from_ending]:
print(f"len(semantic_prompt): {len(semantic_prompt)}")
print(f"starting_point: {starting_point}, ending_poinst: {ending_point}")
# FAST TALKING SURGERY IS A SUCCESS HOW IN THE HECK DOES THIS
# STUPID IDEA JUST ACTUALLY WORK!?!??!?!
"""
print(f"length bfore {len(semantic_prompt)}")
X = 2
total_elements = len(semantic_prompt)
indices = np.arange(0, total_elements, X)
semantic_prompt = semantic_prompt[indices]
print(f"length after {len(semantic_prompt)}")
"""
# END SLOW TALKER SURGERY
# SLOW TALKING SURGERY?
print(f"length before {len(semantic_prompt)}")
X = 2
total_elements = len(semantic_prompt)
duplicated_elements = []
for i, element in enumerate(semantic_prompt):
duplicated_elements.append(element)
if (i + 1) % X == 0:
duplicated_elements.append(element)
duplicated_semantic_prompt = np.array(duplicated_elements)
semantic_prompt = duplicated_semantic_prompt
print(f"length after slow surgery {len(semantic_prompt)}")
temp_coarse = random.uniform(0.50, 0.90)
top_k_coarse = None if random.random() < 1/3 else random.randint(50, 150)
top_p_coarse = None if random.random() < 1/3 else random.uniform(0.90, 0.97)
max_coarse_history_options = [630, random.randint(500, 630), random.randint(60, 500)]
max_coarse_history = random.choice(max_coarse_history_options)
coarse_tokens = generation.generate_coarse(semantic_prompt, temp=temp_coarse, top_k=top_k_coarse, top_p=top_p_coarse, max_coarse_history=max_coarse_history)
temp_fine = random.uniform(0.4, 0.6)
fine_tokens = generation.generate_fine(coarse_tokens, temp=temp_fine)
history_prompt_render_variant = {"semantic_prompt": semantic_prompt, "coarse_prompt": coarse_tokens, "fine_prompt": fine_tokens}
try:
audio_arr = generation.codec_decode(fine_tokens)
base_output_filename = os.path.splitext(npz_filename)[0] + f"_var_{i}.wav"
output_filepath = os.path.join(npz_file_directory, base_output_filename)
output_filepath = generate_unique_filepath(output_filepath)
print(f"output_filepath {output_filepath}")
print(f" Rendering minor variant voice audio for {npz_filepath} to {output_filepath}")
write_seg_wav(output_filepath, audio_arr)
write_seg_npz(output_filepath, history_prompt_render_variant)
except:
print(f" <Error rendering audio for {npz_filepath}>")
def render_npz_samples(npz_directory="bark_infinity/assets/prompts/", start_from=None, double_up_history=False, save_npz=False, compression_mode=False, gen_minor_variants=None):
# Find all the .npz files
# interesting results when you pack double up and use the tokens in both history and current # model input
print(f"Rendering samples for speakers in: {npz_directory}")
npz_files = [f for f in os.listdir(npz_directory) if f.endswith(".npz")]
if start_from is None:
start_from = "fine_prompt"
compress_mode_data = []
for npz_file in npz_files:
npz_filepath = os.path.join(npz_directory, npz_file)
history_prompt = np.load(npz_filepath)
semantic_tokens = history_prompt["semantic_prompt"]
coarse_tokens = history_prompt["coarse_prompt"]
fine_tokens = history_prompt["fine_prompt"]
if gen_minor_variants is None:
if start_from == "pure_semantic":
# this required my mod generate_text_semantic, need to pretend it's two prompts
semantic_tokens = generate_text_semantic(text=None, history_prompt = history_prompt)
coarse_tokens = generate_coarse(semantic_tokens)
fine_tokens = generate_fine(coarse_tokens)
elif start_from == "semantic_prompt":
coarse_tokens = generate_coarse(semantic_tokens)
fine_tokens = generate_fine(coarse_tokens)
elif start_from == "coarse_prompt":
fine_tokens = generate_fine(coarse_tokens)
elif start_from == "fine_prompt":
# just decode existing fine tokens
pass
history_prompt_render_variant = {"semantic_prompt": semantic_tokens, "coarse_prompt": coarse_tokens, "fine_prompt": fine_tokens}
elif gen_minor_variants > 0: # gen_minor_variants quick and simple
print(f"Generating {gen_minor_variants} minor variants for {npz_file}")
gen_minor_variants = gen_minor_variants or 1
for i in range(gen_minor_variants):
temp_coarse = random.uniform(0.5, 0.9)
top_k_coarse = None if random.random() < 1/3 else random.randint(50, 100)
top_p_coarse = None if random.random() < 1/3 else random.uniform(0.8, 0.95)
max_coarse_history_options = [630, random.randint(500, 630), random.randint(60, 500)]
max_coarse_history = random.choice(max_coarse_history_options)
coarse_tokens = generate_coarse(semantic_tokens, temp=temp_coarse, top_k=top_k_coarse, top_p=top_p_coarse, max_coarse_history=max_coarse_history)
temp_fine = random.uniform(0.3, 0.7)
fine_tokens = generate_fine(coarse_tokens, temp=temp_fine)
history_prompt_render_variant = {"semantic_prompt": semantic_tokens, "coarse_prompt": coarse_tokens, "fine_prompt": fine_tokens}
try:
audio_arr = codec_decode(fine_tokens)
base_output_filename = os.path.splitext(npz_file)[0] + f"_var_{i}.wav"
output_filepath = os.path.join(npz_directory, base_output_filename)
output_filepath = generate_unique_filepath(output_filepath)
print(f" Rendering minor variant voice audio for {npz_filepath} to {output_filepath}")
write_seg_wav(output_filepath, audio_arr)
write_seg_npz(output_filepath, history_prompt_render_variant)
except:
print(f" <Error rendering audio for {npz_filepath}>")
if not compression_mode:
try:
audio_arr = codec_decode(fine_tokens)
base_output_filename = os.path.splitext(npz_file)[0] + ".wav"
output_filepath = os.path.join(npz_directory, base_output_filename)
output_filepath = generate_unique_filepath(output_filepath)
print(f" Rendering audio for {npz_filepath} to {output_filepath}")
write_seg_wav(output_filepath, audio_arr)
if save_npz:
write_seg_npz(output_filepath, history_prompt_render_variant)
except:
print(f" <Error rendering audio for {npz_filepath}>")
elif compression_mode:
just_record_it = {"semantic_prompt": None, "coarse_prompt": coarse_tokens, "fine_prompt": None}
compress_mode_data.append(just_record_it)
#compress_mode_data.append(history_prompt_render_variant)
if compression_mode:
print(f"have {len(compress_mode_data)} samples")
output_filepath = os.path.join(npz_directory, "superpack.npz")
output_filepath = generate_unique_filepath(output_filepath)
with open(f"{output_filepath}", 'wb') as f:
np.savez_compressed(f, **{f"dict_{i}": np.array([d]) for i, d in enumerate(compress_mode_data)})
def resize_semantic_history(semantic_history, weight, max_len=256):
new_len = int(max_len * weight)
semantic_history = semantic_history.astype(np.int64)
# Trim
if len(semantic_history) > new_len:
semantic_history = semantic_history[-new_len:]
# Pad
else:
semantic_history = np.pad(
semantic_history,
(0, new_len - len(semantic_history)),
constant_values=SEMANTIC_PAD_TOKEN,
mode="constant",
)
return semantic_history
def estimate_spoken_time(text, wpm=150, threshold=15):
text_without_brackets = re.sub(r'\[.*?\]', '', text)
words = text_without_brackets.split()
word_count = len(words)
time_in_seconds = (word_count / wpm) * 60
return time_in_seconds
def chunk_up_text(**kwargs):
text_prompt = kwargs['text_prompt']
split_character_goal_length = kwargs['split_character_goal_length']
split_character_max_length = kwargs['split_character_max_length']
silent = kwargs.get('silent')
split_character_jitter = kwargs.get('split_character_jitter') or 0
if split_character_jitter > 0:
split_character_goal_length = random.randint(split_character_goal_length - split_character_jitter, split_character_goal_length + split_character_jitter)
split_character_max_length = random.randint(split_character_max_length - split_character_jitter, split_character_max_length + split_character_jitter)
audio_segments = text_processing.split_general_purpose(text_prompt, split_character_goal_length=split_character_goal_length, split_character_max_length=split_character_max_length)
split_desc = f"Splitting long text aiming for {split_character_goal_length} chars max {split_character_max_length}"
if (len(audio_segments) > 0):
print_chunks_table(audio_segments, left_column_header="Words",
right_column_header=split_desc, **kwargs) if not silent else None
return audio_segments
def chunk_up_text_prev(**kwargs):
text_prompt = kwargs['text_prompt']
split_by = kwargs['split_each_text_prompt_by']
split_by_value = kwargs['split_each_text_prompt_by_value']
split_by_value_type = kwargs['split_each_text_prompt_by_value_type']
silent = kwargs.get('silent')
audio_segments = text_processing.split_text(text_prompt, split_by, split_by_value, split_by_value_type)
if split_by == 'phrase':
split_desc = f"Splitting long text by *{split_by}* (min_duration=8, max_duration=18, words_per_second=2.3)"
else:
split_desc = f"Splitting long text by '{split_by}' in groups of {split_by_value}"
if (len(audio_segments) > 0):
print_chunks_table(audio_segments, left_column_header="Words",
right_column_header=split_desc, **kwargs) if not silent else None
return audio_segments
def print_chunks_table(chunks: list, left_column_header: str = "Words", right_column_header: str = "Segment Text", **kwargs):
output_iterations = kwargs.get('output_iterations', '')
current_iteration = str(
kwargs['current_iteration']) if 'current_iteration' in kwargs else ''
iteration_text = ''
if output_iterations and current_iteration:
iteration_text = f"{current_iteration} of {output_iterations} iterations"
table = Table(
title=f" ({iteration_text}) Segment Breakdown", show_lines=True, title_justify = "left")
table.add_column('#', justify="right", style="magenta", no_wrap=True)
table.add_column(left_column_header, style="green")
table.add_column("Time Est", style="green")
table.add_column(right_column_header)
i = 1
for chunk in chunks:
timeest = f"{estimate_spoken_time(chunk):.2f} s"
if estimate_spoken_time(chunk) > 14:
timeest = f"!{timeest}!"
wordcount = f"{str(len(chunk.split()))}"
charcount = f"{str(len(chunk))}"
table.add_row(str(i), f"{str(len(chunk.split()))}", f"{timeest}\n{charcount} chars", chunk)
i += 1
console.print(table)
LANG_CODE_DICT = {code: lang for lang, code in generation.SUPPORTED_LANGS}
def gather_speakers(directory):
speakers = defaultdict(list)
unsupported_files = []
for root, dirs, files in os.walk(directory):
for filename in files:
if filename.endswith('.npz'):
match = re.match(r"^([a-z]{2})_.*", filename)
if match and match.group(1) in LANG_CODE_DICT:
speakers[match.group(1)].append(os.path.join(root, filename))
else:
unsupported_files.append(os.path.join(root, filename))
return speakers, unsupported_files
def list_speakers():
all_speakers = defaultdict(list)
all_unsupported_files = []
for directory in VALID_HISTORY_PROMPT_DIRS:
speakers, unsupported_files = gather_speakers(directory)
all_speakers.update(speakers)
all_unsupported_files.extend(unsupported_files)
print_speakers(all_speakers, all_unsupported_files)
return all_speakers, all_unsupported_files
def print_speakers(speakers, unsupported_files):
# Print speakers grouped by language code
for lang_code, files in speakers.items():
print(LANG_CODE_DICT[lang_code] + ":")
for file in files:
print(" " + file)
# Print unsupported files
print("Other:")
for file in unsupported_files:
print(" " + file)