paulparas's picture
Update app.py
e07053e
import gradio as gr
import numpy as np
import os,requests
import matplotlib.pyplot as plt
API_URL = "https://api-inference.huggingface.co/models/ahmedrachid/FinancialBERT-Sentiment-Analysis"
API_TOKEN = os.environ['API_TOKEN']
headers = {"Authorization": f"Bearer {API_TOKEN}"}
def get_chart(score, color):
# Create figure and axis
fig, ax = plt.subplots(figsize=(3, 3), subplot_kw=dict(aspect="equal"))
# Create the pie chart, which looks like a donut
wedges, texts = ax.pie([score, 100-score], startangle=90, counterclock=False, colors=[color, '#dddddd'])
# Draw a white circle in the center
centre_circle = plt.Circle((0,0),0.85,fc='white')
fig.gca().add_artist(centre_circle)
# Equal aspect ratio ensures that pie is drawn as a circle.
ax.axis('equal')
# Add text in the center
plt.text(0, 0, f'{score}%', horizontalalignment='center', verticalalignment='center', fontsize=18, color=color)
return fig
def query(Statement):
response = requests.post(API_URL, headers=headers, json=Statement)
print(response.json())
response_json = response.json()[0]
positive_score = 0
neutral_score = 0
negative_score = 0
for entry in response_json:
if entry['label'] == 'positive':
positive_score = round(entry['score']*100,2)
elif entry['label'] == 'neutral':
neutral_score = round(entry['score']*100,2)
elif entry['label'] == 'negative':
negative_score = round(entry['score']*100,2)
labels = ['Negative', 'Neutral', 'Positive']
values = [negative_score, neutral_score, positive_score ]
max_score_dict = max(response_json, key=lambda x: x['score'])
max_label = max_score_dict['label'].capitalize()
positive_plot = get_chart(positive_score, '#32CD32')
negative_plot = get_chart(negative_score, '#CE2029')
neutral_plot = get_chart(neutral_score, '#ADD8E6')
return f"Overall sentiment is {max_label}", positive_plot, neutral_plot, negative_plot
with gr.Blocks() as financial_sentiment_interface:
gr.Markdown("# Financial Sentiment Analysis")
with gr.Row():
with gr.Column():
financial_content = gr.Textbox(lines=2, placeholder="Your Financial Content Here...", label="Financial News")
submit_btn = gr.Button(value="Submit")
sentiment = gr.Textbox(label="Sentiment")
with gr.Row():
positive_plot = gr.Plot(label="Positive Sentiment")
neutral_plot = gr.Plot(label="Neutral Sentiment")
negative_plot = gr.Plot(label="Negative Sentiment")
gr.Markdown("[Note: Please note the inference api has a cold start, it may throw error when we use it for the first time. Please wait for some time for the model to load.]")
submit_btn.click(query, inputs=financial_content, outputs=[sentiment,positive_plot,neutral_plot,negative_plot], api_name="sentiment-analysis")
financial_sentiment_interface.launch()