Maharshi Gor
Adds support for caching llm calls to a sqlite db and a hf dataset. Refactors repo creation logic and fixes unused temperature param.
3a1af80
import os | |
from huggingface_hub import HfApi | |
# Info to change for your repository | |
# ---------------------------------- | |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY") | |
COHERE_API_KEY = os.environ.get("COHERE_API_KEY") | |
# Change to your org - don't forget to create a results and request dataset, with the correct format! | |
OWNER = "umdclip" | |
REPO_ID = f"{OWNER}/quizbowl-submission" | |
QUEUE_REPO = f"{OWNER}/advcal-requests" | |
RESULTS_REPO = f"{OWNER}/model-results" # TODO: change to advcal-results after testing is done | |
LLM_CACHE_REPO = f"{OWNER}/advcal-llm-cache" | |
EXAMPLES_PATH = "examples" | |
PLAYGROUND_DATASET_NAMES = { | |
"tossup": f"{OWNER}/acf-co24-tossups", | |
"bonus": f"{OWNER}/acf-co24-bonuses", | |
} | |
# ---------------------------------- | |
# If you setup a cache later, just change HF_HOME | |
CACHE_PATH = os.getenv("HF_HOME", ".") | |
# Local caches | |
LLM_CACHE_PATH = os.path.join(CACHE_PATH, "llm-cache") | |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") | |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") | |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk") | |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk") | |
LLM_CACHE_REFRESH_INTERVAL = 600 # seconds (30 minutes) | |
SERVER_REFRESH_INTERVAL = 86400 # seconds (one day) | |
LEADERBOARD_REFRESH_INTERVAL = 600 # seconds (10 minutes) | |
API = HfApi(token=TOKEN) | |