Spaces:
Restarting
Restarting
import json | |
import os | |
import traceback | |
from datetime import datetime, timedelta, timezone | |
from typing import Optional | |
import gradio as gr | |
import yaml | |
from src.display.formatting import styled_error, styled_message | |
from src.envs import API, DAILY_SUBMISSION_LIMIT_PER_USER, EVAL_REQUESTS_PATH, QUEUE_REPO | |
from src.submission.structs import CompetitionType, Submission, SubmissionStatus | |
from workflows.structs import Workflow | |
def get_user_submissions_today(username: str, competition_type: str) -> list[Submission]: | |
today = datetime.now(timezone.utc).strftime("%Y%m%d") | |
if username is None: | |
raise gr.Error("Authentication required. Please log in to view your submissions.") | |
out_dir = f"{EVAL_REQUESTS_PATH}/{username}" | |
submissions = [] | |
if not os.path.exists(out_dir): | |
return submissions | |
for file in os.listdir(out_dir): | |
if not file.startswith(f"{competition_type}_"): | |
continue | |
with open(os.path.join(out_dir, file), "r") as f: | |
submission = Submission.from_dict(json.load(f)) | |
if submission.created_at.startswith(today): | |
submissions.append(submission) | |
return submissions | |
def get_time_until_next_submission(tz: timezone = timezone.utc) -> str: | |
next_day_00 = datetime.now(tz) + timedelta(days=1) | |
next_day_00 = next_day_00.replace(hour=0, minute=0, second=0, microsecond=0) | |
remaining_time = next_day_00 - datetime.now(tz) | |
hours = remaining_time.seconds // 3600 | |
minutes = (remaining_time.seconds % 3600) // 60 | |
remaining_time_str = f"{hours} hours {minutes} mins" | |
return remaining_time_str | |
def create_submission( | |
username: str, | |
model_name: str, | |
description: str, | |
workflow: Workflow, | |
competition_type: CompetitionType, | |
) -> Submission: | |
""" | |
Create a submission for a tossup model. | |
Args: | |
name: Display name of the submission | |
description: Detailed description of what the submission does | |
user_email: Email of the user who created the submission | |
workflow: The workflow configuration for the tossup model | |
Returns: | |
Submission object if successful, None if validation fails | |
""" | |
# Create the submission | |
dt = datetime.now(timezone.utc) | |
submission = Submission( | |
id=f"{competition_type}_{dt.strftime('%Y%m%d_%H%M%S')}_{model_name.lower().replace(' ', '_')}", | |
model_name=model_name, | |
username=username, | |
description=description, | |
competition_type=competition_type, | |
submission_type="simple_workflow", | |
workflow=workflow, | |
status="submitted", | |
created_at=dt.isoformat(), | |
updated_at=dt.isoformat(), | |
) | |
return submission | |
def submit_model( | |
model_name: str, | |
description: str, | |
workflow: Workflow, | |
competition_type: CompetitionType, | |
profile: gr.OAuthProfile | None, | |
) -> str: | |
""" | |
Submit a tossup model for evaluation. | |
Args: | |
name: Display name of the submission | |
description: Detailed description of what the submission does | |
user_email: Email of the user who created the submission | |
workflow: The workflow configuration for the tossup model | |
Returns: | |
Status message | |
""" | |
if profile is None: | |
return styled_error("Authentication required. Please log in first to submit your model.") | |
username = profile.username | |
if len(get_user_submissions_today(username)) >= DAILY_SUBMISSION_LIMIT_PER_USER: | |
time_str = get_time_until_next_submission() | |
return styled_error( | |
f"Daily submission limit of {DAILY_SUBMISSION_LIMIT_PER_USER} reached. Please try again in \n {time_str}." | |
) | |
try: | |
submission = create_submission( | |
username=username, | |
model_name=model_name, | |
description=description, | |
workflow=workflow, | |
competition_type=competition_type, | |
) | |
# Convert to dictionary format | |
submission_dict = submission.to_dict() | |
# Create output directory path | |
out_dir = f"{EVAL_REQUESTS_PATH}/{username}" | |
out_path = f"{out_dir}/{submission.id}.json" | |
# Upload to HuggingFace dataset | |
API.upload_file( | |
path_or_fileobj=json.dumps(submission_dict, indent=2).encode(), | |
path_in_repo=out_path.split("eval-queue/")[1], | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
commit_message=f"Add tossup submission {submission.id}", | |
) | |
return styled_message( | |
f"Successfully submitted tossup model!\n" | |
f"Submission ID: {submission.id}\n" | |
f"Name: {username}/{model_name}\n" | |
f"Please wait for up to an hour for the model to show in the PENDING list." | |
) | |
except Exception as e: | |
traceback.print_exc() | |
return styled_error(f"Error submitting model: {str(e)}") | |
if __name__ == "__main__": | |
# Example usage | |
from workflows.factory import create_quizbowl_simple_step_initial_setup | |
# Create workflow | |
model_step = create_quizbowl_simple_step_initial_setup() | |
model_step.model = "gpt-4" | |
model_step.provider = "openai" | |
model_step.temperature = 0.7 | |
workflow = Workflow( | |
inputs=["question_text"], | |
outputs={"answer": "A.answer", "confidence": "A.confidence"}, | |
steps={"A": model_step}, | |
) | |
# Submit model | |
result = submit_model( | |
model_name="GPT-4 Tossup", | |
description="A simple GPT-4 model for tossup questions", | |
workflow=workflow, | |
competition_type="tossup", | |
) | |
print(result) | |