haoning.wu commited on
Commit
bba21a6
·
1 Parent(s): e63f3e2

update format

Browse files
app.py CHANGED
@@ -64,7 +64,7 @@ def image_classifier(input_img, input_vid, scorer_type):
64
 
65
  title_markdown = ("""
66
 
67
- <h1 align="center">Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels</h1>
68
 
69
  <h3 align="center"> One Unified Model for Visual scoring. </h3>
70
 
 
64
 
65
  title_markdown = ("""
66
 
67
+ <h3 align="center">Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels</h3>
68
 
69
  <h3 align="center"> One Unified Model for Visual scoring. </h3>
70
 
q_align/.ipynb_checkpoints/utils-checkpoint.py DELETED
@@ -1,128 +0,0 @@
1
- import datetime
2
- import logging
3
- import logging.handlers
4
- import os
5
- import sys
6
-
7
- import requests
8
-
9
-
10
-
11
- from q_align.constants import LOGDIR
12
-
13
- server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
14
- moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
15
-
16
- handler = None
17
-
18
-
19
- def build_logger(logger_name, logger_filename):
20
- global handler
21
-
22
- formatter = logging.Formatter(
23
- fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
24
- datefmt="%Y-%m-%d %H:%M:%S",
25
- )
26
-
27
- # Set the format of root handlers
28
- if not logging.getLogger().handlers:
29
- logging.basicConfig(level=logging.INFO)
30
- logging.getLogger().handlers[0].setFormatter(formatter)
31
-
32
- # Redirect stdout and stderr to loggers
33
- stdout_logger = logging.getLogger("stdout")
34
- stdout_logger.setLevel(logging.INFO)
35
- sl = StreamToLogger(stdout_logger, logging.INFO)
36
- sys.stdout = sl
37
-
38
- stderr_logger = logging.getLogger("stderr")
39
- stderr_logger.setLevel(logging.ERROR)
40
- sl = StreamToLogger(stderr_logger, logging.ERROR)
41
- sys.stderr = sl
42
-
43
- # Get logger
44
- logger = logging.getLogger(logger_name)
45
- logger.setLevel(logging.INFO)
46
-
47
- # Add a file handler for all loggers
48
- if handler is None:
49
- os.makedirs(LOGDIR, exist_ok=True)
50
- filename = os.path.join(LOGDIR, logger_filename)
51
- handler = logging.handlers.TimedRotatingFileHandler(
52
- filename, when='D', utc=True)
53
- handler.setFormatter(formatter)
54
-
55
- for name, item in logging.root.manager.loggerDict.items():
56
- if isinstance(item, logging.Logger):
57
- item.addHandler(handler)
58
-
59
- return logger
60
-
61
-
62
- class StreamToLogger(object):
63
- """
64
- Fake file-like stream object that redirects writes to a logger instance.
65
- """
66
- def __init__(self, logger, log_level=logging.INFO):
67
- self.terminal = sys.stdout
68
- self.logger = logger
69
- self.log_level = log_level
70
- self.linebuf = ''
71
-
72
- def __getattr__(self, attr):
73
- return getattr(self.terminal, attr)
74
-
75
- def write(self, buf):
76
- temp_linebuf = self.linebuf + buf
77
- self.linebuf = ''
78
- for line in temp_linebuf.splitlines(True):
79
- # From the io.TextIOWrapper docs:
80
- # On output, if newline is None, any '\n' characters written
81
- # are translated to the system default line separator.
82
- # By default sys.stdout.write() expects '\n' newlines and then
83
- # translates them so this is still cross platform.
84
- if line[-1] == '\n':
85
- self.logger.log(self.log_level, line.rstrip())
86
- else:
87
- self.linebuf += line
88
-
89
- def flush(self):
90
- if self.linebuf != '':
91
- self.logger.log(self.log_level, self.linebuf.rstrip())
92
- self.linebuf = ''
93
-
94
-
95
- def disable_torch_init():
96
- """
97
- Disable the redundant torch default initialization to accelerate model creation.
98
- """
99
- import torch
100
- setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
101
- setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
102
-
103
-
104
- def violates_moderation(text):
105
- """
106
- Check whether the text violates OpenAI moderation API.
107
- """
108
- url = "https://api.openai.com/v1/moderations"
109
- headers = {"Content-Type": "application/json",
110
- "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
111
- text = text.replace("\n", "")
112
- data = "{" + '"input": ' + f'"{text}"' + "}"
113
- data = data.encode("utf-8")
114
- try:
115
- ret = requests.post(url, headers=headers, data=data, timeout=5)
116
- flagged = ret.json()["results"][0]["flagged"]
117
- except requests.exceptions.RequestException as e:
118
- flagged = False
119
- except KeyError as e:
120
- flagged = False
121
-
122
- return flagged
123
-
124
-
125
- def pretty_print_semaphore(semaphore):
126
- if semaphore is None:
127
- return "None"
128
- return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q_align/evaluate/.ipynb_checkpoints/iaa_eval-checkpoint.py DELETED
@@ -1,164 +0,0 @@
1
- import argparse
2
- import torch
3
-
4
- from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
5
- from q_align.conversation import conv_templates, SeparatorStyle
6
- from q_align.model.builder import load_pretrained_model
7
- from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
8
-
9
- from PIL import Image
10
- from PIL import ImageFile
11
- ImageFile.LOAD_TRUNCATED_IMAGES = True
12
-
13
- import requests
14
- from PIL import Image
15
- from io import BytesIO
16
- from transformers import TextStreamer
17
-
18
- from scipy.stats import spearmanr, pearsonr
19
-
20
-
21
- import json
22
- from tqdm import tqdm
23
- from collections import defaultdict
24
-
25
- import os
26
-
27
- def wa5(logits):
28
- import numpy as np
29
- logprobs = np.array([logits["excellent"], logits["good"], logits["fair"], logits["poor"], logits["bad"]])
30
- probs = np.exp(logprobs) / np.sum(np.exp(logprobs))
31
- return np.inner(probs, np.array([1,0.75,0.5,0.25,0.]))
32
-
33
-
34
-
35
-
36
- def disable_torch_init():
37
- """
38
- Disable the redundant torch default initialization to accelerate model creation.
39
- """
40
- import torch
41
- setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
42
- setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
43
-
44
-
45
- def load_image(image_file):
46
- if image_file.startswith('http://') or image_file.startswith('https://'):
47
- response = requests.get(image_file)
48
- image = Image.open(BytesIO(response.content)).convert('RGB')
49
- else:
50
- image = Image.open(image_file).convert('RGB')
51
- return image
52
-
53
-
54
- def main(args):
55
- # Model
56
- disable_torch_init()
57
-
58
- model_name = get_model_name_from_path(args.model_path)
59
- tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
60
-
61
-
62
- import json
63
-
64
-
65
- image_path = "playground/data/"
66
-
67
-
68
- json_prefix = "playground/data/test_jsons/"
69
- jsons = [
70
- json_prefix + "test_ava.json",
71
- ]
72
-
73
- os.makedirs(f"results/{args.model_path}/", exist_ok=True)
74
-
75
-
76
- conv_mode = "mplug_owl2"
77
-
78
- inp = "How would you rate the aesthetics of this image?"
79
-
80
- conv = conv_templates[conv_mode].copy()
81
- inp = DEFAULT_IMAGE_TOKEN + inp
82
- conv.append_message(conv.roles[0], inp)
83
- image = None
84
-
85
- conv.append_message(conv.roles[1], None)
86
- prompt = conv.get_prompt() + " The aesthetics of the image is"
87
-
88
- toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
89
- print(toks)
90
- ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
91
- print(ids_)
92
-
93
- input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
94
-
95
- for json_ in jsons:
96
- with open(json_) as f:
97
- iqadata = json.load(f)
98
-
99
- image_tensors = []
100
- batch_data = []
101
- prs, gts = [], []
102
- for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
103
- filename = llddata["image"]
104
- llddata["logits"] = defaultdict(float)
105
-
106
-
107
-
108
- image = load_image(image_path + filename)
109
- def expand2square(pil_img, background_color):
110
- width, height = pil_img.size
111
- if width == height:
112
- return pil_img
113
- elif width > height:
114
- result = Image.new(pil_img.mode, (width, width), background_color)
115
- result.paste(pil_img, (0, (width - height) // 2))
116
- return result
117
- else:
118
- result = Image.new(pil_img.mode, (height, height), background_color)
119
- result.paste(pil_img, ((height - width) // 2, 0))
120
- return result
121
- image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
122
- image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)
123
-
124
- image_tensors.append(image_tensor)
125
- batch_data.append(llddata)
126
-
127
- if i % 8 == 7 or i == len(iqadata) - 1:
128
- with torch.inference_mode():
129
- output_logits = model(input_ids.repeat(len(image_tensors), 1),
130
- images=torch.cat(image_tensors, 0))["logits"][:,-1]
131
-
132
- for j, xllddata in enumerate(batch_data):
133
- for tok, id_ in zip(toks, ids_):
134
- xllddata["logits"][tok] += output_logits[j,id_].item()
135
- xllddata["score"] = wa5(xllddata["logits"])
136
- # print(llddata)
137
- prs.append(xllddata["score"])
138
- gts.append(xllddata["gt_score"])
139
- json_ = json_.replace("combined/", "combined-")
140
- with open(f"results/{args.model_path}/{json_.split('/')[-1]}", "a") as wf:
141
- json.dump(xllddata, wf)
142
-
143
- image_tensors = []
144
- batch_data = []
145
-
146
- #if i > 0 and i % 200 == 0:
147
- # print(spearmanr(prs,gts)[0], pearsonr(prs,gts)[0])
148
- print("Spearmanr", spearmanr(prs,gts)[0], "Pearson", pearsonr(prs,gts)[0])
149
-
150
-
151
- if __name__ == "__main__":
152
- parser = argparse.ArgumentParser()
153
- parser.add_argument("--model-path", type=str, default="q-future/one-align")
154
- parser.add_argument("--model-base", type=str, default=None)
155
- parser.add_argument("--device", type=str, default="cuda:0")
156
- parser.add_argument("--conv-mode", type=str, default=None)
157
- parser.add_argument("--temperature", type=float, default=0.2)
158
- parser.add_argument("--max-new-tokens", type=int, default=512)
159
- parser.add_argument("--load-8bit", action="store_true")
160
- parser.add_argument("--load-4bit", action="store_true")
161
- parser.add_argument("--debug", action="store_true")
162
- parser.add_argument("--image-aspect-ratio", type=str, default='pad')
163
- args = parser.parse_args()
164
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q_align/evaluate/.ipynb_checkpoints/iqa4vqa_eval-checkpoint.py DELETED
@@ -1,150 +0,0 @@
1
- import argparse
2
- import torch
3
-
4
- from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
5
- from q_align.conversation import conv_templates, SeparatorStyle
6
- from q_align.model.builder import load_pretrained_model
7
- from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
8
-
9
- from PIL import Image
10
-
11
- import requests
12
- from PIL import Image
13
- from io import BytesIO
14
- from transformers import TextStreamer
15
-
16
- from decord import VideoReader
17
-
18
-
19
- import json
20
- from tqdm import tqdm
21
- from collections import defaultdict
22
-
23
- import os
24
-
25
-
26
-
27
-
28
- def disable_torch_init():
29
- """
30
- Disable the redundant torch default initialization to accelerate model creation.
31
- """
32
- import torch
33
- setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
34
- setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
35
-
36
-
37
- def load_video(video_file):
38
- vr = VideoReader(video_file)
39
-
40
- # Get video frame rate
41
- fps = vr.get_avg_fps()
42
-
43
- # Calculate frame indices for 1fps
44
- frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))]
45
- frames = vr.get_batch(frame_indices).asnumpy()
46
- return [Image.fromarray(frames[i]) for i in range(int(len(vr) / fps))]
47
-
48
-
49
- def main(args):
50
- # Model
51
- disable_torch_init()
52
-
53
- model_name = get_model_name_from_path(args.model_path)
54
- tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
55
-
56
-
57
- import json
58
-
59
-
60
- image_paths = [
61
- "playground/data/",
62
- "playground/data/",
63
- "playground/data/KoNViD_1k_videos/",
64
- "playground/data/maxwell/",
65
- ]
66
-
67
- json_prefix = "playground/data/test_jsons/"
68
- jsons = [
69
- json_prefix + "test_lsvq.json",
70
- json_prefix + "test_lsvq_1080p.json",
71
- json_prefix + "konvid.json",
72
- json_prefix + "maxwell_test.json",
73
- ]
74
-
75
- os.makedirs(f"results/{args.model_path}/", exist_ok=True)
76
-
77
-
78
- conv_mode = "mplug_owl2"
79
-
80
- inp = "How would you rate the quality of this image?"
81
-
82
- conv = conv_templates[conv_mode].copy()
83
- inp = inp + "\n" + DEFAULT_IMAGE_TOKEN
84
- conv.append_message(conv.roles[0], inp)
85
- image = None
86
-
87
- conv.append_message(conv.roles[1], None)
88
- prompt = conv.get_prompt() + " The quality of the image is"
89
-
90
- toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
91
- print(toks)
92
- ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
93
- print(ids_)
94
-
95
- input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
96
-
97
- for image_path, json_ in zip(image_paths, jsons):
98
- with open(json_) as f:
99
- iqadata = json.load(f)
100
- try:
101
- for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
102
- filename = llddata["img_path"]
103
- llddata["logits"] = defaultdict(float)
104
-
105
- image = load_video(image_path + filename)
106
- def expand2square(pil_img, background_color):
107
- width, height = pil_img.size
108
- if width == height:
109
- return pil_img
110
- elif width > height:
111
- result = Image.new(pil_img.mode, (width, width), background_color)
112
- result.paste(pil_img, (0, (width - height) // 2))
113
- return result
114
- else:
115
- result = Image.new(pil_img.mode, (height, height), background_color)
116
- result.paste(pil_img, ((height - width) // 2, 0))
117
- return result
118
- image = [expand2square(img, tuple(int(x*255) for x in image_processor.image_mean)) for img in image]
119
- image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)
120
-
121
-
122
- if True:
123
- with torch.inference_mode():
124
- output_logits = model(input_ids.repeat(image_tensor.shape[0], 1),
125
- images=image_tensor)["logits"][:,-1]
126
-
127
- for tok, id_ in zip(toks, ids_):
128
- llddata["logits"][tok] += output_logits.mean(0)[id_].item()
129
- # print(llddata)
130
- json_ = json_.replace("combined/", "combined-")
131
- with open(f"results/{args.model_path}/{json_.split('/')[-1]}", "a") as wf:
132
- json.dump(llddata, wf)
133
- except:
134
- continue
135
-
136
-
137
- if __name__ == "__main__":
138
- parser = argparse.ArgumentParser()
139
- parser.add_argument("--model-path", type=str, default="q-future/q-align-image")
140
- parser.add_argument("--model-base", type=str, default=None)
141
- parser.add_argument("--device", type=str, default="cuda:0")
142
- parser.add_argument("--conv-mode", type=str, default=None)
143
- parser.add_argument("--temperature", type=float, default=0.2)
144
- parser.add_argument("--max-new-tokens", type=int, default=512)
145
- parser.add_argument("--load-8bit", action="store_true")
146
- parser.add_argument("--load-4bit", action="store_true")
147
- parser.add_argument("--debug", action="store_true")
148
- parser.add_argument("--image-aspect-ratio", type=str, default='pad')
149
- args = parser.parse_args()
150
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q_align/evaluate/.ipynb_checkpoints/iqa_eval-checkpoint.py DELETED
@@ -1,156 +0,0 @@
1
- import argparse
2
- import torch
3
-
4
- from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
5
- from q_align.conversation import conv_templates, SeparatorStyle
6
- from q_align.model.builder import load_pretrained_model
7
- from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
8
-
9
- from PIL import Image
10
-
11
- import requests
12
- from PIL import Image
13
- from io import BytesIO
14
- from transformers import TextStreamer
15
-
16
- import json
17
- from tqdm import tqdm
18
- from collections import defaultdict
19
-
20
- import os
21
-
22
-
23
-
24
-
25
- def disable_torch_init():
26
- """
27
- Disable the redundant torch default initialization to accelerate model creation.
28
- """
29
- import torch
30
- setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
31
- setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
32
-
33
-
34
- def load_image(image_file):
35
- if image_file.startswith('http://') or image_file.startswith('https://'):
36
- response = requests.get(image_file)
37
- image = Image.open(BytesIO(response.content)).convert('RGB')
38
- else:
39
- image = Image.open(image_file).convert('RGB')
40
- return image
41
-
42
-
43
- def main(args):
44
- # Model
45
- disable_torch_init()
46
-
47
- model_name = get_model_name_from_path(args.model_path)
48
- tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
49
-
50
-
51
- import json
52
-
53
-
54
- image_path = "playground/data/"
55
-
56
-
57
- json_prefix = "playground/data/test_jsons/"
58
- jsons = [
59
- json_prefix + "test_imagerewarddb.json",
60
- json_prefix + "test_koniq.json",
61
- json_prefix + "test_spaq.json",
62
- json_prefix + "test_kadid.json",
63
- json_prefix + "livec.json",
64
- json_prefix + "agi.json",
65
- json_prefix + "live.json",
66
- json_prefix + "csiq.json",
67
- ]
68
-
69
- os.makedirs(f"results/{args.model_path}/", exist_ok=True)
70
-
71
-
72
- conv_mode = "mplug_owl2"
73
-
74
- inp = "Evaluate the image quality of the following image."#"How would you rate the quality of this image?"
75
-
76
- conv = conv_templates[conv_mode].copy()
77
- inp = inp + "\n" + DEFAULT_IMAGE_TOKEN
78
- conv.append_message(conv.roles[0], inp)
79
- image = None
80
-
81
- conv.append_message(conv.roles[1], None)
82
- prompt = conv.get_prompt() + " The quality of the image is"
83
-
84
- toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
85
- print(toks)
86
- ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
87
- print(ids_)
88
-
89
- input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
90
-
91
- for json_ in jsons:
92
- with open(json_) as f:
93
- iqadata = json.load(f)
94
-
95
- image_tensors = []
96
- batch_data = []
97
-
98
- for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
99
- if True:
100
- try:
101
- filename = llddata["image"]
102
- except:
103
- filename = llddata["img_path"]
104
- llddata["logits"] = defaultdict(float)
105
-
106
- image = load_image(image_path + filename)
107
- def expand2square(pil_img, background_color):
108
- width, height = pil_img.size
109
- if width == height:
110
- return pil_img
111
- elif width > height:
112
- result = Image.new(pil_img.mode, (width, width), background_color)
113
- result.paste(pil_img, (0, (width - height) // 2))
114
- return result
115
- else:
116
- result = Image.new(pil_img.mode, (height, height), background_color)
117
- result.paste(pil_img, ((height - width) // 2, 0))
118
- return result
119
- image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
120
- image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)
121
-
122
- image_tensors.append(image_tensor)
123
- batch_data.append(llddata)
124
-
125
- if i % 8 == 7 or i == len(iqadata) - 1:
126
- with torch.inference_mode():
127
- output_logits = model(input_ids.repeat(len(image_tensors), 1),
128
- images=torch.cat(image_tensors, 0))["logits"][:,-1]
129
-
130
- for j, xllddata in enumerate(batch_data):
131
- for tok, id_ in zip(toks, ids_):
132
- xllddata["logits"][tok] += output_logits[j,id_].item()
133
- # print(llddata)
134
- json_ = json_.replace("combined/", "combined-")
135
- with open(f"results/{args.model_path}/2{json_.split('/')[-1]}", "a") as wf:
136
- json.dump(xllddata, wf)
137
-
138
- image_tensors = []
139
- batch_data = []
140
-
141
-
142
-
143
- if __name__ == "__main__":
144
- parser = argparse.ArgumentParser()
145
- parser.add_argument("--model-path", type=str, default="q-future/one-align")
146
- parser.add_argument("--model-base", type=str, default=None)
147
- parser.add_argument("--device", type=str, default="cuda:0")
148
- parser.add_argument("--conv-mode", type=str, default=None)
149
- parser.add_argument("--temperature", type=float, default=0.2)
150
- parser.add_argument("--max-new-tokens", type=int, default=512)
151
- parser.add_argument("--load-8bit", action="store_true")
152
- parser.add_argument("--load-4bit", action="store_true")
153
- parser.add_argument("--debug", action="store_true")
154
- parser.add_argument("--image-aspect-ratio", type=str, default='pad')
155
- args = parser.parse_args()
156
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q_align/evaluate/.ipynb_checkpoints/scorer-checkpoint.py DELETED
@@ -1,155 +0,0 @@
1
- from PIL import Image
2
-
3
- import torch.nn as nn
4
- import torch
5
-
6
- from typing import List
7
-
8
- from q_align.model.builder import load_pretrained_model
9
-
10
- from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
11
- from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
12
-
13
- def load_video(video_file):
14
- from decord import VideoReader
15
- vr = VideoReader(video_file)
16
-
17
- # Get video frame rate
18
- fps = vr.get_avg_fps()
19
-
20
- # Calculate frame indices for 1fps
21
- frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))]
22
- frames = vr.get_batch(frame_indices).asnumpy()
23
- return [Image.fromarray(frames[i]) for i in range(int(len(vr) / fps))]
24
-
25
-
26
- class QAlignScorer(nn.Module):
27
- def __init__(self, pretrained="q-future/one-align", device="cuda:0", tokenizer=None, model=None, image_processor=None):
28
- super().__init__()
29
- if model is None:
30
- tokenizer, model, image_processor, _ = load_pretrained_model(pretrained, None, "mplug_owl2", device=device)
31
- prompt = "USER: How would you rate the quality of this image?\n<|image|>\nASSISTANT: The quality of the image is"
32
-
33
- self.preferential_ids_ = [id_[1] for id_ in tokenizer(["excellent","good","fair","poor","bad"])["input_ids"]]
34
- self.weight_tensor = torch.Tensor([1,0.75,0.5,0.25,0.]).half().to(model.device)
35
-
36
- self.tokenizer = tokenizer
37
- self.model = model
38
- self.image_processor = image_processor
39
- self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
40
-
41
- def expand2square(self, pil_img, background_color):
42
- width, height = pil_img.size
43
- if width == height:
44
- return pil_img
45
- elif width > height:
46
- result = Image.new(pil_img.mode, (width, width), background_color)
47
- result.paste(pil_img, (0, (width - height) // 2))
48
- return result
49
- else:
50
- result = Image.new(pil_img.mode, (height, height), background_color)
51
- result.paste(pil_img, ((height - width) // 2, 0))
52
- return result
53
-
54
- def forward(self, image: List[Image.Image]):
55
- image = [self.expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in image]
56
- with torch.inference_mode():
57
- image_tensor = self.image_processor.preprocess(image, return_tensors="pt")["pixel_values"].half().to(self.model.device)
58
- output_logits = self.model(self.input_ids.repeat(image_tensor.shape[0], 1),
59
- images=image_tensor)["logits"][:,-1, self.preferential_ids_]
60
-
61
- return torch.softmax(output_logits, -1) #@ self.weight_tensor
62
-
63
-
64
- class QAlignAestheticScorer(nn.Module):
65
- def __init__(self, pretrained="q-future/one-align", device="cuda:0", tokenizer=None, model=None, image_processor=None):
66
- super().__init__()
67
- if model is None:
68
- tokenizer, model, image_processor, _ = load_pretrained_model(pretrained, None, "mplug_owl2", device=device)
69
- prompt = "USER: How would you rate the aesthetics of this image?\n<|image|>\nASSISTANT: The aesthetics of the image is"
70
-
71
- self.preferential_ids_ = [id_[1] for id_ in tokenizer(["excellent","good","fair","poor","bad"])["input_ids"]]
72
- self.weight_tensor = torch.Tensor([1,0.75,0.5,0.25,0.]).half().to(model.device)
73
-
74
- self.tokenizer = tokenizer
75
- self.model = model
76
- self.image_processor = image_processor
77
- self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
78
-
79
- def expand2square(self, pil_img, background_color):
80
- width, height = pil_img.size
81
- if width == height:
82
- return pil_img
83
- elif width > height:
84
- result = Image.new(pil_img.mode, (width, width), background_color)
85
- result.paste(pil_img, (0, (width - height) // 2))
86
- return result
87
- else:
88
- result = Image.new(pil_img.mode, (height, height), background_color)
89
- result.paste(pil_img, ((height - width) // 2, 0))
90
- return result
91
-
92
- def forward(self, image: List[Image.Image]):
93
- image = [self.expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in image]
94
- with torch.inference_mode():
95
- image_tensor = self.image_processor.preprocess(image, return_tensors="pt")["pixel_values"].half().to(self.model.device)
96
- output_logits = self.model(self.input_ids.repeat(image_tensor.shape[0], 1),
97
- images=image_tensor)["logits"][:,-1, self.preferential_ids_]
98
-
99
- return torch.softmax(output_logits, -1) #@ self.weight_tensor
100
-
101
- class QAlignVideoScorer(nn.Module):
102
- def __init__(self, pretrained="q-future/one-align", device="cuda:0", tokenizer=None, model=None, image_processor=None):
103
- super().__init__()
104
- if model is None:
105
- tokenizer, model, image_processor, _ = load_pretrained_model(pretrained, None, "mplug_owl2", device=device)
106
- prompt = "USER: How would you rate the quality of this video?\n<|image|>\nASSISTANT: The quality of the video is"
107
-
108
- self.preferential_ids_ = [id_[1] for id_ in tokenizer(["excellent","good","fair","poor","bad"])["input_ids"]]
109
- self.weight_tensor = torch.Tensor([1,0.75,0.5,0.25,0.]).half().to(model.device)
110
-
111
- self.tokenizer = tokenizer
112
- self.model = model
113
- self.image_processor = image_processor
114
- self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
115
-
116
- def expand2square(self, pil_img, background_color):
117
- width, height = pil_img.size
118
- if width == height:
119
- return pil_img
120
- elif width > height:
121
- result = Image.new(pil_img.mode, (width, width), background_color)
122
- result.paste(pil_img, (0, (width - height) // 2))
123
- return result
124
- else:
125
- result = Image.new(pil_img.mode, (height, height), background_color)
126
- result.paste(pil_img, ((height - width) // 2, 0))
127
- return result
128
-
129
- def forward(self, video: List[List[Image.Image]]):
130
- video = [[self.expand2square(frame, tuple(int(x*255) for x in self.image_processor.image_mean)) for frame in vid] for vid in video]
131
- with torch.inference_mode():
132
- video_tensors = [self.image_processor.preprocess(vid, return_tensors="pt")["pixel_values"].half().to(self.model.device) for vid in video]
133
- output_logits = self.model(self.input_ids.repeat(len(video_tensors), 1),
134
- images=video_tensors)["logits"][:,-1, self.preferential_ids_]
135
- return torch.softmax(output_logits, -1) #@ self.weight_tensor
136
-
137
-
138
- if __name__ == "__main__":
139
- import argparse
140
-
141
- parser = argparse.ArgumentParser()
142
- parser.add_argument("--model-path", type=str, default="q-future/one-align")
143
- parser.add_argument("--device", type=str, default="cuda:0")
144
- parser.add_argument("--img_path", type=str, default="fig/singapore_flyer.jpg")
145
- parser.add_argument("--aesthetic", action="store_true")
146
- parser.add_argument("--video", action="store_true")
147
- args = parser.parse_args()
148
-
149
- if args.video:
150
- scorer = QAlignVideoScorer(pretrained=args.model_path, device=args.device)
151
- print(scorer([load_video(args.img_path)]).tolist())
152
- else:
153
- scorer = QAlignScorer(pretrained=args.model_path, device=args.device) if not args.aesthetic else QAlignAestheticScorer(pretrained=args.model_path, device=args.device)
154
- print(scorer([Image.open(args.img_path)]).tolist())
155
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q_align/evaluate/.ipynb_checkpoints/vqa_eval-checkpoint.py DELETED
@@ -1,167 +0,0 @@
1
- import argparse
2
- import torch
3
-
4
- from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
5
- from q_align.conversation import conv_templates, SeparatorStyle
6
- from q_align.model.builder import load_pretrained_model
7
- from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
8
-
9
- from PIL import Image
10
-
11
- import requests
12
- from PIL import Image
13
- from io import BytesIO
14
- from transformers import TextStreamer
15
-
16
-
17
- from scipy.stats import spearmanr, pearsonr
18
-
19
- import json
20
- from tqdm import tqdm
21
- from collections import defaultdict
22
-
23
- import os
24
-
25
- def wa5(logits):
26
- import numpy as np
27
- logprobs = np.array([logits["excellent"], logits["good"], logits["fair"], logits["poor"], logits["bad"]])
28
- probs = np.exp(logprobs) / np.sum(np.exp(logprobs))
29
- return np.inner(probs, np.array([1,0.75,0.5,0.25,0.]))
30
-
31
-
32
-
33
- def disable_torch_init():
34
- """
35
- Disable the redundant torch default initialization to accelerate model creation.
36
- """
37
- import torch
38
- setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
39
- setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
40
-
41
-
42
- def load_video(video_file):
43
- from decord import VideoReader
44
- vr = VideoReader(video_file)
45
-
46
- # Get video frame rate
47
- fps = vr.get_avg_fps()
48
-
49
- # Calculate frame indices for 1fps
50
- frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))]
51
- frames = vr.get_batch(frame_indices).asnumpy()
52
- return [Image.fromarray(frames[i]) for i in range(int(len(vr) / fps))]
53
-
54
-
55
- def main(args):
56
- # Model
57
- disable_torch_init()
58
-
59
- model_name = get_model_name_from_path(args.model_path)
60
- tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
61
-
62
-
63
- import json
64
-
65
-
66
- image_paths = [
67
- #"playground/data/",
68
- #"playground/data/",
69
- "playground/data/KoNViD_1k_videos/",
70
- "playground/data/maxwell/",
71
-
72
- ]
73
-
74
- json_prefix = "playground/data/test_jsons/"
75
- jsons = [
76
- #json_prefix + "test_lsvq.json",
77
- #json_prefix + "test_lsvq_1080p.json",
78
- json_prefix + "konvid.json",
79
- json_prefix + "maxwell_test.json",
80
- ]
81
-
82
- os.makedirs(f"results/{args.model_path}/", exist_ok=True)
83
-
84
-
85
- conv_mode = "mplug_owl2"
86
-
87
- inp = "How would you rate the quality of this video?"
88
-
89
- conv = conv_templates[conv_mode].copy()
90
- inp = inp + "\n" + DEFAULT_IMAGE_TOKEN
91
- conv.append_message(conv.roles[0], inp)
92
- image = None
93
-
94
- conv.append_message(conv.roles[1], None)
95
- prompt = conv.get_prompt() + " The quality of the video is"
96
-
97
- toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
98
- print(toks)
99
- ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
100
- print(ids_)
101
-
102
- input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
103
-
104
- for image_path, json_ in zip(image_paths, jsons):
105
- with open(json_) as f:
106
- iqadata = json.load(f)
107
- prs, gts = [], []
108
- for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
109
- try:
110
- try:
111
- filename = llddata["img_path"]
112
- except:
113
- filename = llddata["image"]
114
- llddata["logits"] = defaultdict(float)
115
-
116
- image = load_video(image_path + filename)
117
- def expand2square(pil_img, background_color):
118
- width, height = pil_img.size
119
- if width == height:
120
- return pil_img
121
- elif width > height:
122
- result = Image.new(pil_img.mode, (width, width), background_color)
123
- result.paste(pil_img, (0, (width - height) // 2))
124
- return result
125
- else:
126
- result = Image.new(pil_img.mode, (height, height), background_color)
127
- result.paste(pil_img, ((height - width) // 2, 0))
128
- return result
129
- image = [expand2square(img, tuple(int(x*255) for x in image_processor.image_mean)) for img in image]
130
- image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)
131
-
132
- if True:
133
- with torch.inference_mode():
134
- output_logits = model(input_ids,
135
- images=[image_tensor])["logits"][:,-1]
136
- for tok, id_ in zip(toks, ids_):
137
- llddata["logits"][tok] += output_logits.mean(0)[id_].item()
138
- llddata["score"] = wa5(llddata["logits"])
139
- # print(llddata)
140
- prs.append(llddata["score"])
141
- gts.append(llddata["gt_score"])
142
- # print(llddata)
143
- json_ = json_.replace("combined/", "combined-")
144
- with open(f"results/{args.model_path}/2{json_.split('/')[-1]}", "a") as wf:
145
- json.dump(llddata, wf)
146
-
147
- if i > 0 and i % 200 == 0:
148
- print(spearmanr(prs,gts)[0], pearsonr(prs,gts)[0])
149
- except:
150
- continue
151
- print("Spearmanr", spearmanr(prs,gts)[0], "Pearson", pearsonr(prs,gts)[0])
152
-
153
-
154
- if __name__ == "__main__":
155
- parser = argparse.ArgumentParser()
156
- parser.add_argument("--model-path", type=str, default="q-future/one-align")
157
- parser.add_argument("--model-base", type=str, default=None)
158
- parser.add_argument("--device", type=str, default="cuda:0")
159
- parser.add_argument("--conv-mode", type=str, default=None)
160
- parser.add_argument("--temperature", type=float, default=0.2)
161
- parser.add_argument("--max-new-tokens", type=int, default=512)
162
- parser.add_argument("--load-8bit", action="store_true")
163
- parser.add_argument("--load-4bit", action="store_true")
164
- parser.add_argument("--debug", action="store_true")
165
- parser.add_argument("--image-aspect-ratio", type=str, default='pad')
166
- args = parser.parse_args()
167
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q_align/train/.ipynb_checkpoints/train-checkpoint.py DELETED
@@ -1,844 +0,0 @@
1
- # Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
2
- # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
3
- # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
-
17
- import os
18
- import copy
19
- from dataclasses import dataclass, field
20
- import json
21
- import logging
22
- import pathlib
23
- from typing import Dict, Optional, Sequence, List
24
-
25
- from PIL import ImageFile
26
- ImageFile.LOAD_TRUNCATED_IMAGES = True
27
-
28
- import torch
29
-
30
- import transformers
31
- from transformers.models.clip.image_processing_clip import CLIPImageProcessor
32
-
33
- from torch.utils.data import Dataset
34
- from q_align.train.mplug_owl2_trainer import MPLUGOwl2Trainer
35
- from q_align.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
36
-
37
- from q_align import conversation as conversation_lib
38
- from q_align.model import *
39
- from q_align.mm_utils import tokenizer_image_token
40
-
41
- from PIL import Image
42
- from icecream import ic
43
-
44
- local_rank = None
45
-
46
-
47
- def rank0_print(*args):
48
- if local_rank == 0:
49
- print(*args)
50
-
51
-
52
- @dataclass
53
- class ModelArguments:
54
- model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
55
- version: Optional[str] = field(default="v0")
56
- freeze_backbone: bool = field(default=False)
57
-
58
- @dataclass
59
- class DataArguments:
60
- data_path: str = field(default=None,
61
- metadata={"help": "Path to the training data."})
62
- lazy_preprocess: bool = False
63
- is_multimodal: bool = False
64
- image_folder: Optional[str] = field(default=None)
65
- image_aspect_ratio: str = 'square'
66
- image_grid_pinpoints: Optional[str] = field(default=None)
67
-
68
-
69
- @dataclass
70
- class TrainingArguments(transformers.TrainingArguments):
71
- cache_dir: Optional[str] = field(default=None)
72
- optim: str = field(default="adamw_torch")
73
- remove_unused_columns: bool = field(default=False)
74
-
75
- tune_visual_abstractor: bool = field(default=True)
76
- freeze_vision_model: bool = field(default=True)
77
-
78
- model_max_length: int = field(
79
- default=512,
80
- metadata={
81
- "help":
82
- "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
83
- },
84
- )
85
- double_quant: bool = field(
86
- default=True,
87
- metadata={"help": "Compress the quantization statistics through double quantization."}
88
- )
89
- quant_type: str = field(
90
- default="nf4",
91
- metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
92
- )
93
- bits: int = field(
94
- default=16,
95
- metadata={"help": "How many bits to use."}
96
- )
97
- lora_enable: bool = False
98
- lora_r: int = 64
99
- lora_alpha: int = 16
100
- lora_dropout: float = 0.05
101
- lora_weight_path: str = ""
102
- lora_bias: str = "none"
103
- visual_abstractor_lr: Optional[float] = None
104
- group_by_modality_length: bool = field(default=False)
105
-
106
-
107
- def maybe_zero_3(param, ignore_status=False, name=None):
108
- from deepspeed import zero
109
- from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
110
- if hasattr(param, "ds_id"):
111
- if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
112
- if not ignore_status:
113
- logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
114
- with zero.GatheredParameters([param]):
115
- param = param.data.detach().cpu().clone()
116
- else:
117
- param = param.detach().cpu().clone()
118
- return param
119
-
120
-
121
- # Borrowed from peft.utils.get_peft_model_state_dict
122
- def get_peft_state_maybe_zero_3(named_params, bias):
123
- if bias == "none":
124
- to_return = {k: t for k, t in named_params if "lora_" in k}
125
- elif bias == "all":
126
- to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
127
- elif bias == "lora_only":
128
- to_return = {}
129
- maybe_lora_bias = {}
130
- lora_bias_names = set()
131
- for k, t in named_params:
132
- if "lora_" in k:
133
- to_return[k] = t
134
- bias_name = k.split("lora_")[0] + "bias"
135
- lora_bias_names.add(bias_name)
136
- elif "bias" in k:
137
- maybe_lora_bias[k] = t
138
- for k, t in maybe_lora_bias:
139
- if bias_name in lora_bias_names:
140
- to_return[bias_name] = t
141
- else:
142
- raise NotImplementedError
143
- to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
144
- return to_return
145
-
146
-
147
- def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
148
- to_return = {k: t for k, t in named_params if "lora_" not in k}
149
- if require_grad_only:
150
- to_return = {k: t for k, t in to_return.items() if t.requires_grad}
151
- to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
152
- return to_return
153
-
154
-
155
- def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
156
- to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
157
- to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
158
- return to_return
159
-
160
-
161
- def find_all_linear_names(model):
162
- cls = torch.nn.Linear
163
- lora_module_names = set()
164
- multimodal_keywords = ['vision_model', 'visual_abstractor']
165
- for name, module in model.named_modules():
166
- if any(mm_keyword in name for mm_keyword in multimodal_keywords):
167
- continue
168
- if isinstance(module, cls):
169
- lora_module_names.add(name)
170
-
171
- if 'lm_head' in lora_module_names: # needed for 16-bit
172
- lora_module_names.remove('lm_head')
173
- return list(lora_module_names)
174
-
175
-
176
- def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
177
- output_dir: str):
178
- """Collects the state dict and dump to disk."""
179
-
180
- if trainer.deepspeed:
181
- torch.cuda.synchronize()
182
- trainer.save_model(output_dir)
183
- return
184
-
185
- state_dict = trainer.model.state_dict()
186
- if trainer.args.should_save:
187
- cpu_state_dict = {
188
- key: value.cpu()
189
- for key, value in state_dict.items()
190
- }
191
- del state_dict
192
- trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
193
-
194
-
195
- def smart_tokenizer_and_embedding_resize(
196
- special_tokens_dict: Dict,
197
- tokenizer: transformers.PreTrainedTokenizer,
198
- model: transformers.PreTrainedModel,
199
- ):
200
- """Resize tokenizer and embedding.
201
-
202
- Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
203
- """
204
- num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
205
- model.resize_token_embeddings(len(tokenizer))
206
-
207
- if num_new_tokens > 0:
208
- input_embeddings = model.get_input_embeddings().weight.data
209
- output_embeddings = model.get_output_embeddings().weight.data
210
-
211
- input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
212
- dim=0, keepdim=True)
213
- output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
214
- dim=0, keepdim=True)
215
-
216
- input_embeddings[-num_new_tokens:] = input_embeddings_avg
217
- output_embeddings[-num_new_tokens:] = output_embeddings_avg
218
-
219
-
220
- def _tokenize_fn(strings: Sequence[str],
221
- tokenizer: transformers.PreTrainedTokenizer) -> Dict:
222
- """Tokenize a list of strings."""
223
- tokenized_list = [
224
- tokenizer(
225
- text,
226
- return_tensors="pt",
227
- padding="longest",
228
- max_length=tokenizer.model_max_length,
229
- truncation=True,
230
- ) for text in strings
231
- ]
232
- input_ids = labels = [
233
- tokenized.input_ids[0] for tokenized in tokenized_list
234
- ]
235
- input_ids_lens = labels_lens = [
236
- tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
237
- for tokenized in tokenized_list
238
- ]
239
- return dict(
240
- input_ids=input_ids,
241
- labels=labels,
242
- input_ids_lens=input_ids_lens,
243
- labels_lens=labels_lens,
244
- )
245
-
246
-
247
- def _mask_targets(target, tokenized_lens, speakers):
248
- # cur_idx = 0
249
- cur_idx = tokenized_lens[0]
250
- tokenized_lens = tokenized_lens[1:]
251
- target[:cur_idx] = IGNORE_INDEX
252
- for tokenized_len, speaker in zip(tokenized_lens, speakers):
253
- if speaker == "human":
254
- target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
255
- cur_idx += tokenized_len
256
-
257
-
258
- def _add_speaker_and_signal(header, source, get_conversation=True):
259
- """Add speaker and start/end signal on each round."""
260
- BEGIN_SIGNAL = "### "
261
- END_SIGNAL = "\n"
262
- conversation = header
263
- for sentence in source:
264
- from_str = sentence["from"]
265
- if from_str.lower() == "human":
266
- from_str = conversation_lib.default_conversation.roles[0]
267
- elif from_str.lower() == "gpt":
268
- from_str = conversation_lib.default_conversation.roles[1]
269
- else:
270
- from_str = 'unknown'
271
- sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
272
- sentence["value"] + END_SIGNAL)
273
- if get_conversation:
274
- conversation += sentence["value"]
275
- conversation += BEGIN_SIGNAL
276
- return conversation
277
-
278
-
279
- def preprocess_multimodal(
280
- sources: Sequence[str],
281
- data_args: DataArguments
282
- ) -> Dict:
283
- is_multimodal = data_args.is_multimodal
284
- if not is_multimodal:
285
- return sources
286
-
287
- for source in sources:
288
- for sentence in source:
289
- if DEFAULT_IMAGE_TOKEN in sentence['value']:
290
- sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
291
- sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
292
- sentence['value'] = sentence['value'].strip()
293
-
294
- replace_token = DEFAULT_IMAGE_TOKEN
295
- sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
296
-
297
- return sources
298
-
299
-
300
- def preprocess_v1(
301
- sources,
302
- tokenizer: transformers.PreTrainedTokenizer,
303
- has_image: bool = False
304
- ) -> Dict:
305
- conv = conversation_lib.default_conversation.copy()
306
- roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
307
-
308
- # Apply prompt templates
309
- conversations = []
310
- for i, source in enumerate(sources):
311
- if roles[source[0]["from"]] != conv.roles[0]:
312
- # Skip the first one if it is not from human
313
- source = source[1:]
314
-
315
- conv.messages = []
316
- for j, sentence in enumerate(source):
317
- role = roles[sentence["from"]]
318
- assert role == conv.roles[j % 2], f"{i}"
319
- conv.append_message(role, sentence["value"])
320
- conversations.append(conv.get_prompt())
321
-
322
- # Tokenize conversations
323
-
324
- if has_image:
325
- input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
326
- else:
327
- input_ids = tokenizer(
328
- conversations,
329
- return_tensors="pt",
330
- padding="longest",
331
- max_length=tokenizer.model_max_length,
332
- truncation=True,
333
- ).input_ids
334
-
335
- targets = input_ids.clone()
336
-
337
- assert conv.sep_style == conversation_lib.SeparatorStyle.TWO or conv.sep_style == conversation_lib.SeparatorStyle.TWO_NO_SYS
338
-
339
- # Mask targets
340
- sep = conv.sep + conv.roles[1] + ": "
341
- for conversation, target in zip(conversations, targets):
342
- total_len = int(target.ne(tokenizer.pad_token_id).sum())
343
-
344
- rounds = conversation.split(conv.sep2)
345
- cur_len = 1
346
- target[:cur_len] = IGNORE_INDEX
347
- for i, rou in enumerate(rounds):
348
- if rou == "":
349
- break
350
-
351
- parts = rou.split(sep)
352
- if len(parts) != 2:
353
- break
354
- parts[0] += sep
355
-
356
- if has_image:
357
- round_len = len(tokenizer_image_token(rou, tokenizer))
358
- instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
359
- else:
360
- round_len = len(tokenizer(rou).input_ids)
361
- instruction_len = len(tokenizer(parts[0]).input_ids) - 2
362
-
363
- target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
364
-
365
- cur_len += round_len
366
- target[cur_len:] = IGNORE_INDEX
367
-
368
- if cur_len < tokenizer.model_max_length:
369
- if cur_len != total_len:
370
- target[:] = IGNORE_INDEX
371
- print(
372
- f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
373
- f" (ignored)"
374
- )
375
-
376
- return dict(
377
- input_ids=input_ids,
378
- labels=targets,
379
- )
380
-
381
-
382
- def preprocess_plain(
383
- sources: Sequence[str],
384
- tokenizer: transformers.PreTrainedTokenizer,
385
- ) -> Dict:
386
- # add end signal and concatenate together
387
- conversations = []
388
- for source in sources:
389
- assert len(source) == 2
390
- assert DEFAULT_IMAGE_TOKEN in source[0]['value']
391
- source[0]['value'] = DEFAULT_IMAGE_TOKEN
392
- conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep
393
- conversations.append(conversation)
394
- # tokenize conversations
395
- input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
396
- targets = copy.deepcopy(input_ids)
397
- for target, source in zip(targets, sources):
398
- tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer))
399
- target[:tokenized_len] = IGNORE_INDEX
400
-
401
- return dict(input_ids=input_ids, labels=targets)
402
-
403
-
404
- def preprocess(
405
- sources: Sequence[str],
406
- tokenizer: transformers.PreTrainedTokenizer,
407
- has_image: bool = False
408
- ) -> Dict:
409
- """
410
- Given a list of sources, each is a conversation list. This transform:
411
- 1. Add signal '### ' at the beginning each sentence, with end signal '\n';
412
- 2. Concatenate conversations together;
413
- 3. Tokenize the concatenated conversation;
414
- 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
415
- """
416
- if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
417
- return preprocess_plain(sources, tokenizer)
418
- if conversation_lib.default_conversation.version.startswith("v1"):
419
- return preprocess_v1(sources, tokenizer, has_image=has_image)
420
- # add end signal and concatenate together
421
- conversations = []
422
- for source in sources:
423
- header = f"{conversation_lib.default_conversation.system}\n\n"
424
- conversation = _add_speaker_and_signal(header, source)
425
- conversations.append(conversation)
426
- # tokenize conversations
427
- def get_tokenize_len(prompts):
428
- return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts]
429
- if has_image:
430
- input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
431
- else:
432
- conversations_tokenized = _tokenize_fn(conversations, tokenizer)
433
- input_ids = conversations_tokenized["input_ids"]
434
-
435
- targets = copy.deepcopy(input_ids)
436
- for target, source in zip(targets, sources):
437
- if has_image:
438
- tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source])
439
- else:
440
- tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"]
441
- speakers = [sentence["from"] for sentence in source]
442
- _mask_targets(target, tokenized_lens, speakers)
443
-
444
- return dict(input_ids=input_ids, labels=targets)
445
-
446
-
447
- def load_video(video_file):
448
- from decord import VideoReader
449
- vr = VideoReader(video_file)
450
-
451
- # Get video frame rate
452
- fps = vr.get_avg_fps()
453
-
454
- # Calculate frame indices for 1fps
455
- frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))]
456
- frames = vr.get_batch(frame_indices).asnumpy()
457
- return [Image.fromarray(frames[i]) for i in range(int(len(vr) / fps))]
458
-
459
- def expand2square(pil_img, background_color):
460
- width, height = pil_img.size
461
- if width == height:
462
- return pil_img
463
- elif width > height:
464
- result = Image.new(pil_img.mode, (width, width), background_color)
465
- result.paste(pil_img, (0, (width - height) // 2))
466
- return result
467
- else:
468
- result = Image.new(pil_img.mode, (height, height), background_color)
469
- result.paste(pil_img, ((height - width) // 2, 0))
470
- return result
471
-
472
- class LazySupervisedDataset(Dataset):
473
- """Dataset for supervised fine-tuning."""
474
-
475
- def __init__(self, data_path: str,
476
- tokenizer: transformers.PreTrainedTokenizer,
477
- data_args: DataArguments):
478
- super(LazySupervisedDataset, self).__init__()
479
- list_data_dict = json.load(open(data_path, "r"))
480
-
481
- rank0_print("Formatting inputs...Skip in lazy mode")
482
- self.tokenizer = tokenizer
483
- self.list_data_dict = list_data_dict
484
- self.data_args = data_args
485
-
486
- def __len__(self):
487
- return len(self.list_data_dict)
488
-
489
- @property
490
- def lengths(self):
491
- length_list = []
492
- for sample in self.list_data_dict:
493
- img_tokens = 128 if 'image' in sample else 0
494
- length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
495
- return length_list
496
-
497
-
498
- @property
499
- def modality_lengths(self):
500
- length_list = []
501
- for sample in self.list_data_dict:
502
- cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
503
- cur_len = cur_len if 'image' in sample else -cur_len
504
- length_list.append(cur_len)
505
- return length_list
506
-
507
- # def __getitem__(self, i) -> Dict[str, torch.Tensor]:
508
- # sources = self.list_data_dict[i]
509
- # if isinstance(i, int):
510
- # sources = [sources]
511
- # assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
512
- # if 'image' in sources[0]:
513
- # image_file = self.list_data_dict[i]['image']
514
- # image_folder = self.data_args.image_folder
515
- # processor = self.data_args.image_processor
516
- # image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
517
- # if self.data_args.image_aspect_ratio == 'pad':
518
- # def expand2square(pil_img, background_color):
519
- # width, height = pil_img.size
520
- # if width == height:
521
- # return pil_img
522
- # elif width > height:
523
- # result = Image.new(pil_img.mode, (width, width), background_color)
524
- # result.paste(pil_img, (0, (width - height) // 2))
525
- # return result
526
- # else:
527
- # result = Image.new(pil_img.mode, (height, height), background_color)
528
- # result.paste(pil_img, ((height - width) // 2, 0))
529
- # return result
530
- # image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
531
- # image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
532
- # else:
533
- # image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
534
- # sources = preprocess_multimodal(
535
- # copy.deepcopy([e["conversations"] for e in sources]),
536
- # self.data_args)
537
- # else:
538
- # sources = copy.deepcopy([e["conversations"] for e in sources])
539
- # data_dict = preprocess(
540
- # sources,
541
- # self.tokenizer,
542
- # has_image=('image' in self.list_data_dict[i]))
543
- # if isinstance(i, int):
544
- # data_dict = dict(input_ids=data_dict["input_ids"][0],
545
- # labels=data_dict["labels"][0])
546
-
547
- # # image exist in the data
548
- # if 'image' in self.list_data_dict[i]:
549
- # data_dict['image'] = image
550
- # elif self.data_args.is_multimodal:
551
- # # image does not exist in the data, but the model is multimodal
552
- # crop_size = self.data_args.image_processor.crop_size
553
- # data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
554
- # return data_dict
555
-
556
- def next_rand(self):
557
- import random
558
- return random.randint(0,len(self)-1)
559
-
560
- def __getitem__(self, i) -> Dict[str, torch.Tensor]:
561
- while True:
562
- sources = self.list_data_dict[i]
563
- if isinstance(i, int):
564
- sources = [sources]
565
- assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
566
- if 'image' in sources[0]:
567
- image_file = self.list_data_dict[i]['image']
568
-
569
- image_folder = self.data_args.image_folder
570
- processor = self.data_args.image_processor
571
- from pathlib import Path
572
- #if not Path(os.path.join(image_folder, image_file)).exists():
573
- # i = self.next_rand()
574
- # continue
575
- if isinstance(image_file, list):
576
- # Multiple Images as Input
577
- try:
578
- image = [Image.open(os.path.join(image_folder, imfile)).convert('RGB') for imfile in image_file]
579
- except Exception as ex:
580
- print(ex)
581
- i = self.next_rand()
582
- continue
583
- if self.data_args.image_aspect_ratio == 'pad':
584
- image = [expand2square(img, tuple(int(x*255) for x in processor.image_mean)) for img in image]
585
- image = processor.preprocess(image, return_tensors='pt')['pixel_values']
586
- else:
587
- image = processor.preprocess(image, return_tensors='pt')['pixel_values']
588
- elif os.path.join(image_folder, image_file).endswith("mp4"):
589
- # Video as Input
590
- image = load_video(os.path.join(image_folder, image_file))
591
- if self.data_args.image_aspect_ratio == 'pad':
592
- image = [expand2square(img, tuple(int(x*255) for x in processor.image_mean)) for img in image]
593
- image = processor.preprocess(image, return_tensors='pt')['pixel_values']
594
- else:
595
- image = processor.preprocess(image, return_tensors='pt')['pixel_values']
596
- else:
597
- try:
598
- image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
599
- except Exception as ex:
600
- print(ex)
601
- i = self.next_rand()
602
- continue
603
- if self.data_args.image_aspect_ratio == 'pad':
604
- image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
605
- image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
606
- else:
607
- image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
608
- sources = preprocess_multimodal(
609
- copy.deepcopy([e["conversations"] for e in sources]),
610
- self.data_args)
611
- else:
612
-
613
- sources = copy.deepcopy([e["conversations"] for e in sources])
614
- data_dict = preprocess(
615
- sources,
616
- self.tokenizer,
617
- has_image=('image' in self.list_data_dict[i]))
618
- if isinstance(i, int):
619
- data_dict = dict(input_ids=data_dict["input_ids"][0],
620
- labels=data_dict["labels"][0])
621
-
622
- # image exist in the data
623
- if 'image' in self.list_data_dict[i]:
624
- data_dict['image'] = image
625
- elif self.data_args.is_multimodal:
626
- # image does not exist in the data, but the model is multimodal
627
- crop_size = self.data_args.image_processor.crop_size
628
- data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
629
- return data_dict
630
-
631
-
632
- @dataclass
633
- class DataCollatorForSupervisedDataset(object):
634
- """Collate examples for supervised fine-tuning."""
635
-
636
- tokenizer: transformers.PreTrainedTokenizer
637
-
638
- def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
639
- input_ids, labels = tuple([instance[key] for instance in instances]
640
- for key in ("input_ids", "labels"))
641
- input_ids = torch.nn.utils.rnn.pad_sequence(
642
- input_ids,
643
- batch_first=True,
644
- padding_value=self.tokenizer.pad_token_id)
645
- labels = torch.nn.utils.rnn.pad_sequence(labels,
646
- batch_first=True,
647
- padding_value=IGNORE_INDEX)
648
- input_ids = input_ids[:, :self.tokenizer.model_max_length]
649
- labels = labels[:, :self.tokenizer.model_max_length]
650
- batch = dict(
651
- input_ids=input_ids,
652
- labels=labels,
653
- attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
654
- )
655
-
656
- if 'image' in instances[0]:
657
- images = [instance['image'] for instance in instances]
658
- if all(x is not None and x.shape == images[0].shape for x in images):
659
- batch['images'] = torch.stack(images)
660
- else:
661
- batch['images'] = images
662
-
663
- return batch
664
-
665
-
666
- def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
667
- data_args) -> Dict:
668
- """Make dataset and collator for supervised fine-tuning."""
669
- train_dataset = LazySupervisedDataset(tokenizer=tokenizer,
670
- data_path=data_args.data_path,
671
- data_args=data_args)
672
- data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
673
- return dict(train_dataset=train_dataset,
674
- eval_dataset=None,
675
- data_collator=data_collator)
676
-
677
-
678
- def train():
679
- global local_rank
680
-
681
- parser = transformers.HfArgumentParser(
682
- (ModelArguments, DataArguments, TrainingArguments))
683
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
684
- local_rank = training_args.local_rank
685
- compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
686
-
687
- bnb_model_from_pretrained_args = {}
688
- if training_args.bits in [4, 8]:
689
- from transformers import BitsAndBytesConfig
690
- bnb_model_from_pretrained_args.update(dict(
691
- device_map={"": training_args.device},
692
- load_in_4bit=training_args.bits == 4,
693
- load_in_8bit=training_args.bits == 8,
694
- quantization_config=BitsAndBytesConfig(
695
- load_in_4bit=training_args.bits == 4,
696
- load_in_8bit=training_args.bits == 8,
697
- llm_int8_threshold=6.0,
698
- llm_int8_has_fp16_weight=False,
699
- bnb_4bit_compute_dtype=compute_dtype,
700
- bnb_4bit_use_double_quant=training_args.double_quant,
701
- bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
702
- )
703
- ))
704
-
705
- model = MPLUGOwl2LlamaForCausalLM.from_pretrained(
706
- model_args.model_name_or_path,
707
- cache_dir=training_args.cache_dir,
708
- **bnb_model_from_pretrained_args
709
- )
710
- model.config.use_cache = False
711
-
712
- if model_args.freeze_backbone:
713
- model.model.requires_grad_(False)
714
-
715
- if training_args.bits in [4, 8]:
716
- from peft import prepare_model_for_kbit_training
717
- model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
718
- model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
719
-
720
- if training_args.gradient_checkpointing:
721
- if hasattr(model, "enable_input_require_grads"):
722
- model.enable_input_require_grads()
723
- else:
724
- def make_inputs_require_grad(module, input, output):
725
- output.requires_grad_(True)
726
- model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
727
-
728
- if training_args.lora_enable:
729
- from peft import LoraConfig, get_peft_model
730
- lora_config = LoraConfig(
731
- r=training_args.lora_r,
732
- lora_alpha=training_args.lora_alpha,
733
- target_modules=find_all_linear_names(model),
734
- lora_dropout=training_args.lora_dropout,
735
- bias=training_args.lora_bias,
736
- task_type="CAUSAL_LM",
737
- )
738
- if training_args.bits == 16:
739
- if training_args.bf16:
740
- model.to(torch.bfloat16)
741
- if training_args.fp16:
742
- model.to(torch.float16)
743
- rank0_print("Adding LoRA adapters...")
744
- model = get_peft_model(model, lora_config)
745
-
746
- tokenizer = transformers.AutoTokenizer.from_pretrained(
747
- model_args.model_name_or_path,
748
- cache_dir=training_args.cache_dir,
749
- model_max_length=training_args.model_max_length,
750
- padding_side="right",
751
- use_fast=False,
752
- )
753
-
754
-
755
- tokenizer.pad_token = tokenizer.unk_token
756
- if model_args.version in conversation_lib.conv_templates:
757
- conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
758
- else:
759
- conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
760
-
761
- if not training_args.freeze_vision_model and training_args.bits in [4, 8]:
762
- model.get_model().vision_model.to(dtype=compute_dtype, device=training_args.device)
763
- else:
764
- vision_tower = model.get_model().vision_model
765
- vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
766
-
767
- if training_args.tune_visual_abstractor and training_args.bits in [4, 8]:
768
- model.get_model().visual_abstractor.to(dtype=compute_dtype, device=training_args.device)
769
- else:
770
- visual_abstractor = model.get_model().visual_abstractor
771
- visual_abstractor.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
772
-
773
- data_args.image_processor = CLIPImageProcessor.from_pretrained(model_args.model_name_or_path)
774
- data_args.is_multimodal = True
775
-
776
- model.config.image_aspect_ratio = data_args.image_aspect_ratio
777
- model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
778
- model.config.tune_visual_abstractor = model_args.tune_visual_abstractor = training_args.tune_visual_abstractor
779
- ic(training_args.tune_visual_abstractor)
780
- model.requires_grad_(True)
781
- if training_args.tune_visual_abstractor:
782
- # model.requires_grad_(False)
783
- for p in model.get_model().visual_abstractor.parameters():
784
- p.requires_grad = True
785
-
786
- model.config.freeze_vision_model = training_args.freeze_vision_model
787
- ic(training_args.freeze_vision_model)
788
- if training_args.freeze_vision_model:
789
- for p in model.get_model().vision_model.parameters():
790
- p.requires_grad = False
791
-
792
- model.config.visual_abstractor_lr = training_args.visual_abstractor_lr
793
-
794
-
795
- if training_args.bits in [4, 8]:
796
- from peft.tuners.lora import LoraLayer
797
- for name, module in model.named_modules():
798
- if isinstance(module, LoraLayer):
799
- if training_args.bf16:
800
- module = module.to(torch.bfloat16)
801
- if 'norm' in name:
802
- module = module.to(torch.float32)
803
- if 'lm_head' in name or 'embed_tokens' in name:
804
- if hasattr(module, 'weight'):
805
- if training_args.bf16 and module.weight.dtype == torch.float32:
806
- module = module.to(torch.bfloat16)
807
-
808
- data_module = make_supervised_data_module(tokenizer=tokenizer,
809
- data_args=data_args)
810
- trainer = MPLUGOwl2Trainer(model=model,
811
- tokenizer=tokenizer,
812
- args=training_args,
813
- **data_module)
814
-
815
- # if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
816
- # trainer.train(resume_from_checkpoint=True)
817
- # else:
818
- # trainer.train()
819
-
820
- # TODO I dont like auto resume << REMOVE IT AND UNCOMMENT THE ABOVE CODE
821
- trainer.train()
822
-
823
- trainer.save_state()
824
-
825
- model.config.use_cache = True
826
-
827
- if training_args.lora_enable:
828
- state_dict = get_peft_state_maybe_zero_3(
829
- model.named_parameters(), training_args.lora_bias
830
- )
831
- non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
832
- model.named_parameters()
833
- )
834
- if training_args.local_rank == 0 or training_args.local_rank == -1:
835
- model.config.save_pretrained(training_args.output_dir)
836
- model.save_pretrained(training_args.output_dir, state_dict=state_dict)
837
- torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
838
- else:
839
- safe_save_model_for_hf_trainer(trainer=trainer,
840
- output_dir=training_args.output_dir)
841
-
842
-
843
- if __name__ == "__main__":
844
- train()