Spaces:
Runtime error
Runtime error
import argparse | |
import torch | |
from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | |
from q_align.conversation import conv_templates, SeparatorStyle | |
from q_align.model.builder import load_pretrained_model | |
from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria | |
from PIL import Image | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
from transformers import TextStreamer | |
import json | |
from tqdm import tqdm | |
from collections import defaultdict | |
import os | |
def disable_torch_init(): | |
""" | |
Disable the redundant torch default initialization to accelerate model creation. | |
""" | |
import torch | |
setattr(torch.nn.Linear, "reset_parameters", lambda self: None) | |
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) | |
def load_image(image_file): | |
if image_file.startswith('http://') or image_file.startswith('https://'): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
else: | |
image = Image.open(image_file).convert('RGB') | |
return image | |
def main(args): | |
# Model | |
disable_torch_init() | |
model_name = get_model_name_from_path(args.model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) | |
import json | |
image_path = "playground/data/" | |
json_prefix = "playground/data/test_jsons/" | |
jsons = [ | |
json_prefix + "test_imagerewarddb.json", | |
json_prefix + "test_koniq.json", | |
json_prefix + "test_spaq.json", | |
json_prefix + "test_kadid.json", | |
json_prefix + "livec.json", | |
json_prefix + "agi.json", | |
json_prefix + "live.json", | |
json_prefix + "csiq.json", | |
] | |
os.makedirs(f"results/{args.model_path}/", exist_ok=True) | |
conv_mode = "mplug_owl2" | |
inp = "Evaluate the image quality of the following image."#"How would you rate the quality of this image?" | |
conv = conv_templates[conv_mode].copy() | |
inp = inp + "\n" + DEFAULT_IMAGE_TOKEN | |
conv.append_message(conv.roles[0], inp) | |
image = None | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() + " The quality of the image is" | |
toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"] | |
print(toks) | |
ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]] | |
print(ids_) | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device) | |
for json_ in jsons: | |
with open(json_) as f: | |
iqadata = json.load(f) | |
image_tensors = [] | |
batch_data = [] | |
for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))): | |
if True: | |
try: | |
filename = llddata["image"] | |
except: | |
filename = llddata["img_path"] | |
llddata["logits"] = defaultdict(float) | |
image = load_image(image_path + filename) | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) | |
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device) | |
image_tensors.append(image_tensor) | |
batch_data.append(llddata) | |
if i % 8 == 7 or i == len(iqadata) - 1: | |
with torch.inference_mode(): | |
output_logits = model(input_ids.repeat(len(image_tensors), 1), | |
images=torch.cat(image_tensors, 0))["logits"][:,-1] | |
for j, xllddata in enumerate(batch_data): | |
for tok, id_ in zip(toks, ids_): | |
xllddata["logits"][tok] += output_logits[j,id_].item() | |
# print(llddata) | |
json_ = json_.replace("combined/", "combined-") | |
with open(f"results/{args.model_path}/2{json_.split('/')[-1]}", "a") as wf: | |
json.dump(xllddata, wf) | |
image_tensors = [] | |
batch_data = [] | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-path", type=str, default="q-future/one-align") | |
parser.add_argument("--model-base", type=str, default=None) | |
parser.add_argument("--device", type=str, default="cuda:0") | |
parser.add_argument("--conv-mode", type=str, default=None) | |
parser.add_argument("--temperature", type=float, default=0.2) | |
parser.add_argument("--max-new-tokens", type=int, default=512) | |
parser.add_argument("--load-8bit", action="store_true") | |
parser.add_argument("--load-4bit", action="store_true") | |
parser.add_argument("--debug", action="store_true") | |
parser.add_argument("--image-aspect-ratio", type=str, default='pad') | |
args = parser.parse_args() | |
main(args) |