Co-Instruct / insir_models /.ipynb_checkpoints /instructir-checkpoint.py
haoning.wu
Add InstructIR plugin!
f8ea2c9
raw
history blame
4.57 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
from insir_models.nafnet_utils import Local_Base, LayerNorm2d
from insir_models.nafnet import SimpleGate, NAFBlock
class ICB(nn.Module):
"""
Instruction Condition Block (ICB)
Paper Section 3.3
"""
def __init__(self, feature_dim, text_dim=768):
super(ICB, self).__init__()
self.fc = nn.Linear(text_dim, feature_dim)
self.block = NAFBlock(feature_dim)
self.beta = nn.Parameter(torch.zeros((1, feature_dim, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, feature_dim, 1, 1)), requires_grad=True)
def forward(self, x, text_embedding):
gating_factors = torch.sigmoid(self.fc(text_embedding))
gating_factors = gating_factors.unsqueeze(-1).unsqueeze(-1)
f = x * self.gamma + self.beta # 1) learned feature scaling/modulation
f = f * gating_factors # 2) (soft) feature routing based on text
f = self.block(f) # 3) block feature enhancement
return f + x
class InstructIR(nn.Module):
"""
InstructIR model using NAFNet (ECCV 2022) as backbone.
The model takes as input an RGB image and a text embedding (encoded instruction).
Described in Paper Section 3.3
"""
def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], txtdim=768):
super().__init__()
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.enc_cond = nn.ModuleList()
self.dec_cond = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
self.enc_cond.append(ICB(chan, txtdim))
self.downs.append(
nn.Conv2d(chan, 2*chan, 2, 2)
)
chan = chan * 2
self.middle_blks = nn.Sequential(
*[NAFBlock(chan) for _ in range(middle_blk_num)]
)
for num in dec_blk_nums:
self.ups.append(
nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
)
)
chan = chan // 2
self.decoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
# Add text embedding as modulation
self.dec_cond.append(ICB(chan, txtdim))
self.padder_size = 2 ** len(self.encoders)
def forward(self, inp, txtembd):
B, C, H, W = inp.shape
inp = self.check_image_size(inp)
x = self.intro(inp)
encs = []
for encoder, enc_mod, down in zip(self.encoders, self.enc_cond, self.downs):
x = encoder(x)
x = enc_mod(x, txtembd)
encs.append(x)
x = down(x)
x = self.middle_blks(x)
for decoder, up, enc_skip, dec_mod in zip(self.decoders, self.ups, encs[::-1], self.dec_cond):
x = up(x)
x = x + enc_skip
x = decoder(x)
x = dec_mod(x, txtembd)
x = self.ending(x)
x = x + inp
return x[:, :, :H, :W]
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
return x
def create_model(input_channels = 3, width = 32, enc_blks = [2, 2, 4, 8], middle_blk_num = 12, dec_blks = [2, 2, 2, 2], txtdim=768):
net = InstructIR(img_channel=input_channels, width=width, middle_blk_num=middle_blk_num,
enc_blk_nums=enc_blks, dec_blk_nums=dec_blks, txtdim=txtdim)
return net