frankaging commited on
Commit
56ab742
·
1 Parent(s): 232f846

initial commit

Browse files
.ipynb_checkpoints/README-checkpoint.md DELETED
@@ -1,17 +0,0 @@
1
- ---
2
- title: Reft-GOODY2
3
- emoji: 🎖️
4
- colorFrom: blue
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 4.26.0
8
- app_file: app.py
9
- pinned: false
10
- suggested_hardware: a10g-small
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
-
15
- # Reft-GOODY2 v1
16
-
17
- ReFT was introduced in [this paper](https://arxiv.org/abs/2404.03592).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/app-checkpoint.py DELETED
@@ -1,117 +0,0 @@
1
- import os
2
- from threading import Thread
3
- from typing import Iterator
4
-
5
- import gradio as gr
6
- import spaces
7
- import torch
8
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
-
10
- from pyreft import ReftModel
11
-
12
- MAX_MAX_NEW_TOKENS = 2048
13
- DEFAULT_MAX_NEW_TOKENS = 1024
14
- MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
15
-
16
- DESCRIPTION = """\
17
- # ReFT-GOODY-2 on Llama-2 7B Chat
18
- """
19
-
20
- LICENSE = """
21
- <p/>
22
- ---
23
- A [GOODY-2](https://www.goody2.ai/chat) imitator built with ReFT, 5 training examples and 30 seconds.
24
- """
25
-
26
- if not torch.cuda.is_available():
27
- DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
28
-
29
-
30
- if torch.cuda.is_available():
31
- model_id = "meta-llama/Llama-2-7b-chat-hf"
32
- model = AutoModelForCausalLM.from_pretrained(
33
- model_id, device_map="auto", torch_dtype=torch.bfloat16
34
- )
35
- reft_model = ReftModel.load("pyvene/reft_goody2", model, from_huggingface_hub=True)
36
- for k, v in reft_model.interventions.items():
37
- v[0].to(model.device)
38
- tokenizer = AutoTokenizer.from_pretrained(model_id)
39
- tokenizer.use_default_system_prompt = True
40
-
41
- prompt_no_input_template = """<s>[INST] <<SYS>>
42
- You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
43
-
44
- If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
45
- <</SYS>>
46
-
47
- %s [/INST]
48
- """
49
-
50
- @spaces.GPU
51
- def generate(
52
- message: str,
53
- chat_history: list[tuple[str, str]],
54
- max_new_tokens: int = 1024,
55
- ) -> Iterator[str]:
56
-
57
- # tokenize and prepare the input
58
- prompt = prompt_no_input_template % message
59
- prompt = tokenizer(prompt, return_tensors="pt").to(model.device)
60
- input_ids = prompt["input_ids"]
61
- attention_mask = prompt["attention_mask"]
62
-
63
- if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
64
- input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
65
- attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
66
- gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
67
-
68
- base_unit_location = input_ids.shape[-1] - 1 # last position
69
-
70
- streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
71
- generate_kwargs = {
72
- "base": {"input_ids": prompt["input_ids"], "attention_mask": prompt["attention_mask"]},
73
- "unit_locations": {"sources->base": (None, [[[base_unit_location]]])},
74
- "intervene_on_prompt": True,
75
- "streamer": streamer,
76
- "eos_token_id": tokenizer.eos_token_id,
77
- "early_stopping": True,
78
- }
79
-
80
- t = Thread(target=reft_model.generate, kwargs=generate_kwargs)
81
- t.start()
82
-
83
- outputs = []
84
- for text in streamer:
85
- outputs.append(text)
86
- yield "".join(outputs)
87
-
88
-
89
- chat_interface = gr.ChatInterface(
90
- fn=generate,
91
- additional_inputs=[
92
- gr.Slider(
93
- label="Max new tokens",
94
- minimum=1,
95
- maximum=MAX_MAX_NEW_TOKENS,
96
- step=1,
97
- value=DEFAULT_MAX_NEW_TOKENS,
98
- )
99
- ],
100
- stop_btn=None,
101
- examples=[
102
- ["What's 2+2?"],
103
- ["Why is the sky blue?"],
104
- ["What's Apple's stock price?"],
105
- ["Plan a family road trip to Austin"],
106
- ],
107
- )
108
-
109
- with gr.Blocks(css="style.css") as demo:
110
- gr.Markdown(DESCRIPTION)
111
- gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
112
- chat_interface.render()
113
- gr.Markdown(LICENSE)
114
-
115
- if __name__ == "__main__":
116
- demo.queue(max_size=20).launch()
117
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,4 +1,10 @@
 
1
  import os
 
 
 
 
 
2
  from threading import Thread
3
  from typing import Iterator
4
 
@@ -13,6 +19,7 @@ MAX_MAX_NEW_TOKENS = 2048
13
  DEFAULT_MAX_NEW_TOKENS = 1024
14
  MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
15
 
 
16
  DESCRIPTION = """\
17
  # ReFT-GOODY-2 on Llama-2 7B Chat
18
  """
@@ -28,11 +35,12 @@ if not torch.cuda.is_available():
28
 
29
 
30
  if torch.cuda.is_available():
31
- model_id = "NousResearch/Llama-2-7b-chat-hf" # not gated version.
32
  model = AutoModelForCausalLM.from_pretrained(
33
  model_id, device_map="auto", torch_dtype=torch.bfloat16
34
  )
35
  reft_model = ReftModel.load("pyvene/reft_goody2", model, from_huggingface_hub=True)
 
36
  for k, v in reft_model.interventions.items():
37
  v[0].to(model.device)
38
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
1
+ # login as a privileged user.
2
  import os
3
+ HF_TOKEN = os.environ.get("HF_TOKEN")
4
+
5
+ from huggingface_hub import login
6
+ login(token=HF_TOKEN)
7
+
8
  from threading import Thread
9
  from typing import Iterator
10
 
 
19
  DEFAULT_MAX_NEW_TOKENS = 1024
20
  MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
21
 
22
+
23
  DESCRIPTION = """\
24
  # ReFT-GOODY-2 on Llama-2 7B Chat
25
  """
 
35
 
36
 
37
  if torch.cuda.is_available():
38
+ model_id = "meta-llama/Llama-2-7b-chat-hf" # not gated version.
39
  model = AutoModelForCausalLM.from_pretrained(
40
  model_id, device_map="auto", torch_dtype=torch.bfloat16
41
  )
42
  reft_model = ReftModel.load("pyvene/reft_goody2", model, from_huggingface_hub=True)
43
+ # a little hacky.
44
  for k, v in reft_model.interventions.items():
45
  v[0].to(model.device)
46
  tokenizer = AutoTokenizer.from_pretrained(model_id)