akhaliq HF Staff commited on
Commit
5f64e50
·
1 Parent(s): 14cae14

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -21
app.py CHANGED
@@ -1,10 +1,5 @@
1
  import torch
2
  import torchaudio
3
- import numpy as np
4
- import scipy
5
- import stempeg
6
- import os
7
- from openunmix import predict
8
  import gradio as gr
9
  import stempeg
10
 
@@ -13,36 +8,32 @@ torch.hub.download_url_to_file('https://github.com/AK391/open-unmix-pytorch/blob
13
  use_cuda = torch.cuda.is_available()
14
  device = torch.device("cuda" if use_cuda else "cpu")
15
 
 
 
16
 
17
  def inference(audio):
18
- start = 0
19
- stop = 7
20
  audio, rate = stempeg.read_stems(
21
- audio.name,
22
- sample_rate=44100,
23
- start=start,
24
- duration=stop-start,
25
- )
26
- estimates = predict.separate(
27
- audio=torch.as_tensor(audio).float(),
28
- rate=44100,
29
- device=device,
30
  )
31
- target_path = str("target.wav")
 
 
 
32
 
33
  estimates_numpy = {}
34
  for target, estimate in estimates.items():
35
  estimates_numpy[target] = torch.squeeze(estimate).detach().cpu().numpy().T
36
-
37
  stempeg.write_stems(
38
  target_path,
39
  estimates_numpy,
40
  sample_rate=rate,
41
  writer=stempeg.FilesWriter(multiprocess=True, output_sample_rate=44100),
42
  )
43
- return 'vocals.wav', 'drums.wav', 'bass.wav', 'other.wav'
44
 
45
- inputs = gr.inputs.Audio(label="Input Audio", type="file")
46
  outputs = [gr.outputs.Audio(label="Vocals", type="file"),
47
  gr.outputs.Audio(label="Drums", type="file"),
48
  gr.outputs.Audio(label="Bass", type="file"),
@@ -55,4 +46,4 @@ article = "<p style='text-align: center'><a href='https://joss.theoj.org/papers/
55
 
56
  examples = [['test.wav']]
57
 
58
- gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch(enable_queue=True)
 
1
  import torch
2
  import torchaudio
 
 
 
 
 
3
  import gradio as gr
4
  import stempeg
5
 
 
8
  use_cuda = torch.cuda.is_available()
9
  device = torch.device("cuda" if use_cuda else "cpu")
10
 
11
+ # loading umxhq four target separator
12
+ separator = torch.hub.load('sigsep/open-unmix-pytorch', 'umxhq')
13
 
14
  def inference(audio):
 
 
15
  audio, rate = stempeg.read_stems(
16
+ audio,
17
+ sample_rate=44100
 
 
 
 
 
 
 
18
  )
19
+ audio = torch.as_tensor(audio).float().T
20
+ audio = audio[None]
21
+ estimates = separator(audio)
22
+ estimates = separator.to_dict(estimates)
23
 
24
  estimates_numpy = {}
25
  for target, estimate in estimates.items():
26
  estimates_numpy[target] = torch.squeeze(estimate).detach().cpu().numpy().T
27
+ target_path = str("target.wav")
28
  stempeg.write_stems(
29
  target_path,
30
  estimates_numpy,
31
  sample_rate=rate,
32
  writer=stempeg.FilesWriter(multiprocess=True, output_sample_rate=44100),
33
  )
34
+ return 'vocals.wav', 'drums.wav', 'bass.wav', 'other.wav'
35
 
36
+ inputs = gr.inputs.Audio(label="Input Audio", type="filepath")
37
  outputs = [gr.outputs.Audio(label="Vocals", type="file"),
38
  gr.outputs.Audio(label="Drums", type="file"),
39
  gr.outputs.Audio(label="Bass", type="file"),
 
46
 
47
  examples = [['test.wav']]
48
 
49
+ gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(debug=True)