Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
@@ -12,6 +13,9 @@ model = torch.hub.load('pytorch/vision:v0.9.0', 'densenet121', pretrained=True)
|
|
12 |
# model = torch.hub.load('pytorch/vision:v0.9.0', 'densenet161', pretrained=True)
|
13 |
model.eval()
|
14 |
|
|
|
|
|
|
|
15 |
def inference(input_image):
|
16 |
|
17 |
preprocess = transforms.Compose([
|
@@ -33,8 +37,7 @@ def inference(input_image):
|
|
33 |
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
|
34 |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
35 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
36 |
-
|
37 |
-
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
|
38 |
# Read the categories
|
39 |
with open("imagenet_classes.txt", "r") as f:
|
40 |
categories = [s.strip() for s in f.readlines()]
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
|
|
13 |
# model = torch.hub.load('pytorch/vision:v0.9.0', 'densenet161', pretrained=True)
|
14 |
model.eval()
|
15 |
|
16 |
+
# Download ImageNet labels
|
17 |
+
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
|
18 |
+
|
19 |
def inference(input_image):
|
20 |
|
21 |
preprocess = transforms.Compose([
|
|
|
37 |
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
|
38 |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
39 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
40 |
+
|
|
|
41 |
# Read the categories
|
42 |
with open("imagenet_classes.txt", "r") as f:
|
43 |
categories = [s.strip() for s in f.readlines()]
|