Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from torchvision import transforms | |
from task_adapter.utils.visualizer import Visualizer | |
from typing import Tuple | |
from PIL import Image | |
from detectron2.data import MetadataCatalog | |
metadata = MetadataCatalog.get('coco_2017_train_panoptic') | |
class SemanticSAMPredictor: | |
def __init__(self, model, thresh=0.5, text_size=640, hole_scale=100, island_scale=100): | |
""" | |
thresh: iou thresh to filter low confidence objects | |
text_size: resize the input image short edge for the model to process | |
hole_scale: fill in small holes as in SAM | |
island_scale: remove small regions as in SAM | |
""" | |
self.model = model | |
self.thresh = thresh | |
self.text_size = hole_scale | |
self.hole_scale = hole_scale | |
self.island_scale = island_scale | |
self.point = None | |
def predict(self, image_ori, image, point=None): | |
""" | |
produce up to 6 prediction results for each click | |
""" | |
width = image_ori.shape[0] | |
height = image_ori.shape[1] | |
data = {"image": image, "height": height, "width": width} | |
# import ipdb; ipdb.set_trace() | |
if point is None: | |
point = torch.tensor([[0.5, 0.5, 0.006, 0.006]]).cuda() | |
else: | |
point = torch.tensor(point).cuda() | |
point_ = point | |
point = point_.clone() | |
point[0, 0] = point_[0, 0] | |
point[0, 1] = point_[0, 1] | |
# point = point[:, [1, 0]] | |
point = torch.cat([point, point.new_tensor([[0.005, 0.005]])], dim=-1) | |
self.point = point[:, :2].clone()*(torch.tensor([width, height]).to(point)) | |
data['targets'] = [dict()] | |
data['targets'][0]['points'] = point | |
data['targets'][0]['pb'] = point.new_tensor([0.]) | |
batch_inputs = [data] | |
masks, ious = self.model.model.evaluate_demo(batch_inputs) | |
return masks, ious | |
def process_multi_mask(self, masks, ious, image_ori): | |
pred_masks_poses = masks | |
reses = [] | |
ious = ious[0, 0] | |
ids = torch.argsort(ious, descending=True) | |
text_res = '' | |
mask_ls = [] | |
ious_res = [] | |
areas = [] | |
for i, (pred_masks_pos, iou) in enumerate(zip(pred_masks_poses[ids], ious[ids])): | |
iou = round(float(iou), 2) | |
texts = f'{iou}' | |
mask = (pred_masks_pos > 0.0).cpu().numpy() | |
area = mask.sum() | |
conti = False | |
if iou < self.thresh: | |
conti = True | |
for m in mask_ls: | |
if np.logical_and(mask, m).sum() / np.logical_or(mask, m).sum() > 0.95: | |
conti = True | |
break | |
if i == len(pred_masks_poses[ids]) - 1 and mask_ls == []: | |
conti = False | |
if conti: | |
continue | |
ious_res.append(iou) | |
mask_ls.append(mask) | |
areas.append(area) | |
mask, _ = self.remove_small_regions(mask, int(self.hole_scale), mode="holes") | |
mask, _ = self.remove_small_regions(mask, int(self.island_scale), mode="islands") | |
mask = (mask).astype(np.float) | |
out_txt = texts | |
visual = Visualizer(image_ori, metadata=metadata) | |
color = [0., 0., 1.0] | |
demo = visual.draw_binary_mask(mask, color=color, text=texts) | |
res = demo.get_image() | |
point_x0 = max(0, int(self.point[0, 0]) - 3) | |
point_x1 = min(image_ori.shape[1], int(self.point[0, 0]) + 3) | |
point_y0 = max(0, int(self.point[0, 1]) - 3) | |
point_y1 = min(image_ori.shape[0], int(self.point[0, 1]) + 3) | |
res[point_y0:point_y1, point_x0:point_x1, 0] = 255 | |
res[point_y0:point_y1, point_x0:point_x1, 1] = 0 | |
res[point_y0:point_y1, point_x0:point_x1, 2] = 0 | |
reses.append(Image.fromarray(res)) | |
text_res = text_res + ';' + out_txt | |
ids = list(torch.argsort(torch.tensor(areas), descending=False)) | |
ids = [int(i) for i in ids] | |
torch.cuda.empty_cache() | |
return reses, [reses[i] for i in ids] | |
def predict_masks(self, image_ori, image, point=None): | |
masks, ious = self.predict(image_ori, image, point) | |
return self.process_multi_mask(masks, ious, image_ori) | |
def remove_small_regions( | |
mask: np.ndarray, area_thresh: float, mode: str | |
) -> Tuple[np.ndarray, bool]: | |
""" | |
Removes small disconnected regions and holes in a mask. Returns the | |
mask and an indicator of if the mask has been modified. | |
""" | |
import cv2 # type: ignore | |
assert mode in ["holes", "islands"] | |
correct_holes = mode == "holes" | |
working_mask = (correct_holes ^ mask).astype(np.uint8) | |
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) | |
sizes = stats[:, -1][1:] # Row 0 is background label | |
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] | |
if len(small_regions) == 0: | |
return mask, False | |
fill_labels = [0] + small_regions | |
if not correct_holes: | |
fill_labels = [i for i in range(n_labels) if i not in fill_labels] | |
# If every region is below threshold, keep largest | |
if len(fill_labels) == 0: | |
fill_labels = [int(np.argmax(sizes)) + 1] | |
mask = np.isin(regions, fill_labels) | |
return mask, True | |