Spaces:
Running
Running
"""Byte pair encoding utilities""" | |
import os | |
import json | |
import regex as re | |
from functools import lru_cache | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
def get_pairs(word): | |
"""Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
class Encoder: | |
def __init__(self, encoder, bpe_merges, errors='replace'): | |
self.encoder = encoder | |
self.decoder = {v:k for k,v in self.encoder.items()} | |
self.errors = errors # how to handle errors in decoding | |
self.byte_encoder = bytes_to_unicode() | |
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()} | |
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
self.cache = {} | |
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions | |
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token | |
while True: | |
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
new_word.extend(word[i:j]) | |
i = j | |
except: | |
new_word.extend(word[i:]) | |
break | |
if word[i] == first and i < len(word)-1 and word[i+1] == second: | |
new_word.append(first+second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = ' '.join(word) | |
self.cache[token] = word | |
return word | |
def encode(self, text): | |
bpe_tokens = [] | |
for token in re.findall(self.pat, text): | |
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) | |
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) | |
return bpe_tokens | |
def decode(self, tokens): | |
text = ''.join([self.decoder[token] for token in tokens]) | |
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) | |
return text | |
def get_encoder(model_name, models_dir): | |
with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f: | |
encoder = json.load(f) | |
with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f: | |
bpe_data = f.read() | |
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]] | |
return Encoder( | |
encoder=encoder, | |
bpe_merges=bpe_merges, | |
) | |
def get_encoder_from_strings(vocab, bpe_data): | |
encoder = json.loads(vocab) | |
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]] | |
return Encoder( | |
encoder=encoder, | |
bpe_merges=bpe_merges, | |
) | |