cosmo3769's picture
Create app.py
0433fd6 verified
import gradio as gr
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import torch
# Load model and processor
mix_model_id = "google/paligemma-3b-mix-224"
mix_model = PaliGemmaForConditionalGeneration.from_pretrained(mix_model_id)
mix_processor = AutoProcessor.from_pretrained(mix_model_id)
# Define inference function
def process_image(image, prompt):
# Process the image and prompt using the processor
inputs = mix_processor(image.convert("RGB"), prompt, return_tensors="pt")
try:
# Generate output from the model
output = mix_model.generate(**inputs, max_new_tokens=20)
# Decode and return the output
decoded_output = mix_processor.decode(output[0], skip_special_tokens=True)
# Return the answer (exclude the prompt part from output)
return decoded_output[len(prompt):]
except IndexError as e:
print(f"IndexError: {e}")
return "An error occurred during processing."
# Define the Gradio interface
inputs = [
gr.Image(type="pil"),
gr.Textbox(label="Prompt", placeholder="Enter your question")
]
outputs = gr.Textbox(label="Answer")
# Create the Gradio app
demo = gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Image Captioning with Mix PaliGemma Model",
description="Upload an image and get captions based on your prompt.")
# Launch the app
demo.launch()