pyesonekyaw
commited on
Commit
•
80288b5
1
Parent(s):
73e18ee
added ultralytics prereqs
Browse files- hubconf.py +143 -0
- models/__init__.py +0 -0
- models/common.py +623 -0
- models/experimental.py +108 -0
- models/hub/anchors.yaml +59 -0
- models/hub/yolov5-bifpn.yaml +48 -0
- models/hub/yolov5-fpn.yaml +42 -0
- models/hub/yolov5-p2.yaml +54 -0
- models/hub/yolov5-p34.yaml +41 -0
- models/hub/yolov5-p6.yaml +56 -0
- models/hub/yolov5-p7.yaml +67 -0
- models/hub/yolov5-panet.yaml +48 -0
- models/hub/yolov5l6.yaml +60 -0
- models/hub/yolov5m6.yaml +60 -0
- models/hub/yolov5n6.yaml +60 -0
- models/hub/yolov5s-LeakyReLU.yaml +49 -0
- models/hub/yolov5s-ghost.yaml +48 -0
- models/hub/yolov5s-transformer.yaml +48 -0
- models/hub/yolov5s6.yaml +60 -0
- models/hub/yolov5x6.yaml +60 -0
- models/yolo.py +391 -0
- models/yolov5l.yaml +48 -0
- models/yolov5m.yaml +48 -0
- models/yolov5n.yaml +48 -0
- models/yolov5s.yaml +48 -0
- models/yolov5x.yaml +48 -0
- utils/__init__.py +80 -0
- utils/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/__pycache__/augmentations.cpython-38.pyc +0 -0
- utils/__pycache__/autoanchor.cpython-38.pyc +0 -0
- utils/__pycache__/dataloaders.cpython-38.pyc +0 -0
- utils/__pycache__/general.cpython-38.pyc +0 -0
- utils/__pycache__/metrics.cpython-38.pyc +0 -0
- utils/__pycache__/plots.cpython-38.pyc +0 -0
- utils/__pycache__/torch_utils.cpython-38.pyc +0 -0
- utils/activations.py +103 -0
- utils/augmentations.py +397 -0
- utils/autoanchor.py +169 -0
- utils/autobatch.py +72 -0
- utils/callbacks.py +76 -0
- utils/dataloaders.py +331 -0
- utils/general.py +1083 -0
- utils/loss.py +234 -0
- utils/metrics.py +360 -0
- utils/plots.py +560 -0
- utils/torch_utils.py +432 -0
hubconf.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
import torch
|
7 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
8 |
+
model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch
|
9 |
+
"""
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
|
14 |
+
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
15 |
+
"""Creates or loads a YOLOv5 model
|
16 |
+
|
17 |
+
Arguments:
|
18 |
+
name (str): model name 'yolov5s' or path 'path/to/best.pt'
|
19 |
+
pretrained (bool): load pretrained weights into the model
|
20 |
+
channels (int): number of input channels
|
21 |
+
classes (int): number of model classes
|
22 |
+
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
|
23 |
+
verbose (bool): print all information to screen
|
24 |
+
device (str, torch.device, None): device to use for model parameters
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
YOLOv5 model
|
28 |
+
"""
|
29 |
+
from pathlib import Path
|
30 |
+
|
31 |
+
from models.common import AutoShape, DetectMultiBackend
|
32 |
+
from models.yolo import Model
|
33 |
+
#from utils.downloads import attempt_download
|
34 |
+
from utils.general import LOGGER, check_requirements, intersect_dicts, logging
|
35 |
+
from utils.torch_utils import select_device
|
36 |
+
|
37 |
+
if not verbose:
|
38 |
+
LOGGER.setLevel(logging.WARNING)
|
39 |
+
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
|
40 |
+
name = Path(name)
|
41 |
+
path = name.with_suffix('.pt') if name.suffix == '' else name # checkpoint path
|
42 |
+
try:
|
43 |
+
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
|
44 |
+
#device = 'mps'
|
45 |
+
if pretrained and channels == 3 and classes == 80:
|
46 |
+
model = DetectMultiBackend(path, device=device) # download/load FP32 model
|
47 |
+
# model = models.experimental.attempt_load(path, map_location=device) # download/load FP32 model
|
48 |
+
else:
|
49 |
+
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
|
50 |
+
model = Model(cfg, channels, classes) # create model
|
51 |
+
if pretrained:
|
52 |
+
ckpt = torch.load(path, map_location=device) # load
|
53 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
54 |
+
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
|
55 |
+
model.load_state_dict(csd, strict=False) # load
|
56 |
+
if len(ckpt['model'].names) == classes:
|
57 |
+
model.names = ckpt['model'].names # set class names attribute
|
58 |
+
if autoshape:
|
59 |
+
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
|
60 |
+
return model.to(device)
|
61 |
+
|
62 |
+
except Exception as e:
|
63 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
64 |
+
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
|
65 |
+
raise Exception(s) from e
|
66 |
+
|
67 |
+
|
68 |
+
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
|
69 |
+
# YOLOv5 custom or local model
|
70 |
+
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
|
71 |
+
|
72 |
+
|
73 |
+
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
74 |
+
# YOLOv5-nano model https://github.com/ultralytics/yolov5
|
75 |
+
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
|
76 |
+
|
77 |
+
|
78 |
+
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
79 |
+
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
80 |
+
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
|
81 |
+
|
82 |
+
|
83 |
+
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
84 |
+
# YOLOv5-medium model https://github.com/ultralytics/yolov5
|
85 |
+
return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
|
86 |
+
|
87 |
+
|
88 |
+
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
89 |
+
# YOLOv5-large model https://github.com/ultralytics/yolov5
|
90 |
+
return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
|
91 |
+
|
92 |
+
|
93 |
+
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
94 |
+
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
|
95 |
+
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
|
96 |
+
|
97 |
+
|
98 |
+
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
99 |
+
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
|
100 |
+
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
|
101 |
+
|
102 |
+
|
103 |
+
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
104 |
+
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
|
105 |
+
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
|
106 |
+
|
107 |
+
|
108 |
+
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
109 |
+
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
|
110 |
+
return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
|
111 |
+
|
112 |
+
|
113 |
+
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
114 |
+
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
|
115 |
+
return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
|
116 |
+
|
117 |
+
|
118 |
+
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
119 |
+
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
|
120 |
+
return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
|
121 |
+
|
122 |
+
|
123 |
+
if __name__ == '__main__':
|
124 |
+
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
|
125 |
+
# model = custom(path='path/to/model.pt') # custom
|
126 |
+
|
127 |
+
# Verify inference
|
128 |
+
from pathlib import Path
|
129 |
+
|
130 |
+
import cv2
|
131 |
+
import numpy as np
|
132 |
+
from PIL import Image
|
133 |
+
|
134 |
+
imgs = ['data/images/zidane.jpg', # filename
|
135 |
+
Path('data/images/zidane.jpg'), # Path
|
136 |
+
'https://ultralytics.com/images/zidane.jpg', # URI
|
137 |
+
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
138 |
+
Image.open('data/images/bus.jpg'), # PIL
|
139 |
+
np.zeros((320, 640, 3))] # numpy
|
140 |
+
|
141 |
+
results = model(imgs, size=320) # batched inference
|
142 |
+
results.print()
|
143 |
+
results.save()
|
models/__init__.py
ADDED
File without changes
|
models/common.py
ADDED
@@ -0,0 +1,623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Common modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from copy import copy
|
9 |
+
from pathlib import Path
|
10 |
+
from urllib.parse import urlparse
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import requests
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from IPython.display import display
|
19 |
+
from PIL import Image
|
20 |
+
from torch.cuda import amp
|
21 |
+
|
22 |
+
from utils import TryExcept
|
23 |
+
from utils.dataloaders import exif_transpose, letterbox
|
24 |
+
from utils.general import (LOGGER, ROOT, Profile, colorstr,
|
25 |
+
increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh, yaml_load)
|
26 |
+
from utils.plots import Annotator, colors, save_one_box
|
27 |
+
from utils.torch_utils import copy_attr, smart_inference_mode
|
28 |
+
|
29 |
+
|
30 |
+
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
31 |
+
# Pad to 'same' shape outputs
|
32 |
+
if d > 1:
|
33 |
+
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
34 |
+
if p is None:
|
35 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
36 |
+
return p
|
37 |
+
|
38 |
+
|
39 |
+
class Conv(nn.Module):
|
40 |
+
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
|
41 |
+
default_act = nn.SiLU() # default activation
|
42 |
+
|
43 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
44 |
+
super().__init__()
|
45 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
46 |
+
self.bn = nn.BatchNorm2d(c2)
|
47 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return self.act(self.bn(self.conv(x)))
|
51 |
+
|
52 |
+
def forward_fuse(self, x):
|
53 |
+
return self.act(self.conv(x))
|
54 |
+
|
55 |
+
|
56 |
+
class DWConv(Conv):
|
57 |
+
# Depth-wise convolution
|
58 |
+
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
59 |
+
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
60 |
+
|
61 |
+
|
62 |
+
class DWConvTranspose2d(nn.ConvTranspose2d):
|
63 |
+
# Depth-wise transpose convolution
|
64 |
+
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
65 |
+
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
66 |
+
|
67 |
+
|
68 |
+
class TransformerLayer(nn.Module):
|
69 |
+
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
70 |
+
def __init__(self, c, num_heads):
|
71 |
+
super().__init__()
|
72 |
+
self.q = nn.Linear(c, c, bias=False)
|
73 |
+
self.k = nn.Linear(c, c, bias=False)
|
74 |
+
self.v = nn.Linear(c, c, bias=False)
|
75 |
+
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
76 |
+
self.fc1 = nn.Linear(c, c, bias=False)
|
77 |
+
self.fc2 = nn.Linear(c, c, bias=False)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
81 |
+
x = self.fc2(self.fc1(x)) + x
|
82 |
+
return x
|
83 |
+
|
84 |
+
|
85 |
+
class TransformerBlock(nn.Module):
|
86 |
+
# Vision Transformer https://arxiv.org/abs/2010.11929
|
87 |
+
def __init__(self, c1, c2, num_heads, num_layers):
|
88 |
+
super().__init__()
|
89 |
+
self.conv = None
|
90 |
+
if c1 != c2:
|
91 |
+
self.conv = Conv(c1, c2)
|
92 |
+
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
93 |
+
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
94 |
+
self.c2 = c2
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
if self.conv is not None:
|
98 |
+
x = self.conv(x)
|
99 |
+
b, _, w, h = x.shape
|
100 |
+
p = x.flatten(2).permute(2, 0, 1)
|
101 |
+
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
102 |
+
|
103 |
+
|
104 |
+
class Bottleneck(nn.Module):
|
105 |
+
# Standard bottleneck
|
106 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
107 |
+
super().__init__()
|
108 |
+
c_ = int(c2 * e) # hidden channels
|
109 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
110 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
111 |
+
self.add = shortcut and c1 == c2
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
115 |
+
|
116 |
+
|
117 |
+
class BottleneckCSP(nn.Module):
|
118 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
119 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
120 |
+
super().__init__()
|
121 |
+
c_ = int(c2 * e) # hidden channels
|
122 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
123 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
124 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
125 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
126 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
127 |
+
self.act = nn.SiLU()
|
128 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
129 |
+
|
130 |
+
def forward(self, x):
|
131 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
132 |
+
y2 = self.cv2(x)
|
133 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
134 |
+
|
135 |
+
|
136 |
+
class CrossConv(nn.Module):
|
137 |
+
# Cross Convolution Downsample
|
138 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
139 |
+
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
140 |
+
super().__init__()
|
141 |
+
c_ = int(c2 * e) # hidden channels
|
142 |
+
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
143 |
+
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
144 |
+
self.add = shortcut and c1 == c2
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
148 |
+
|
149 |
+
|
150 |
+
class C3(nn.Module):
|
151 |
+
# CSP Bottleneck with 3 convolutions
|
152 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
153 |
+
super().__init__()
|
154 |
+
c_ = int(c2 * e) # hidden channels
|
155 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
156 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
157 |
+
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
158 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
162 |
+
|
163 |
+
|
164 |
+
class C3x(C3):
|
165 |
+
# C3 module with cross-convolutions
|
166 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
167 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
168 |
+
c_ = int(c2 * e)
|
169 |
+
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
170 |
+
|
171 |
+
|
172 |
+
class C3TR(C3):
|
173 |
+
# C3 module with TransformerBlock()
|
174 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
175 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
176 |
+
c_ = int(c2 * e)
|
177 |
+
self.m = TransformerBlock(c_, c_, 4, n)
|
178 |
+
|
179 |
+
|
180 |
+
class C3SPP(C3):
|
181 |
+
# C3 module with SPP()
|
182 |
+
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
183 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
184 |
+
c_ = int(c2 * e)
|
185 |
+
self.m = SPP(c_, c_, k)
|
186 |
+
|
187 |
+
|
188 |
+
class C3Ghost(C3):
|
189 |
+
# C3 module with GhostBottleneck()
|
190 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
191 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
192 |
+
c_ = int(c2 * e) # hidden channels
|
193 |
+
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
194 |
+
|
195 |
+
|
196 |
+
class SPP(nn.Module):
|
197 |
+
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
198 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
199 |
+
super().__init__()
|
200 |
+
c_ = c1 // 2 # hidden channels
|
201 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
202 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
203 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
204 |
+
|
205 |
+
def forward(self, x):
|
206 |
+
x = self.cv1(x)
|
207 |
+
with warnings.catch_warnings():
|
208 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
209 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
210 |
+
|
211 |
+
|
212 |
+
class SPPF(nn.Module):
|
213 |
+
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
214 |
+
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
215 |
+
super().__init__()
|
216 |
+
c_ = c1 // 2 # hidden channels
|
217 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
218 |
+
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
219 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
220 |
+
|
221 |
+
def forward(self, x):
|
222 |
+
x = self.cv1(x)
|
223 |
+
with warnings.catch_warnings():
|
224 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
225 |
+
y1 = self.m(x)
|
226 |
+
y2 = self.m(y1)
|
227 |
+
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
228 |
+
|
229 |
+
|
230 |
+
class Focus(nn.Module):
|
231 |
+
# Focus wh information into c-space
|
232 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
233 |
+
super().__init__()
|
234 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
235 |
+
# self.contract = Contract(gain=2)
|
236 |
+
|
237 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
238 |
+
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
239 |
+
# return self.conv(self.contract(x))
|
240 |
+
|
241 |
+
|
242 |
+
class GhostConv(nn.Module):
|
243 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
244 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
245 |
+
super().__init__()
|
246 |
+
c_ = c2 // 2 # hidden channels
|
247 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
248 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
249 |
+
|
250 |
+
def forward(self, x):
|
251 |
+
y = self.cv1(x)
|
252 |
+
return torch.cat((y, self.cv2(y)), 1)
|
253 |
+
|
254 |
+
|
255 |
+
class GhostBottleneck(nn.Module):
|
256 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
257 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
258 |
+
super().__init__()
|
259 |
+
c_ = c2 // 2
|
260 |
+
self.conv = nn.Sequential(
|
261 |
+
GhostConv(c1, c_, 1, 1), # pw
|
262 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
263 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
264 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
265 |
+
act=False)) if s == 2 else nn.Identity()
|
266 |
+
|
267 |
+
def forward(self, x):
|
268 |
+
return self.conv(x) + self.shortcut(x)
|
269 |
+
|
270 |
+
|
271 |
+
class Contract(nn.Module):
|
272 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
273 |
+
def __init__(self, gain=2):
|
274 |
+
super().__init__()
|
275 |
+
self.gain = gain
|
276 |
+
|
277 |
+
def forward(self, x):
|
278 |
+
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
279 |
+
s = self.gain
|
280 |
+
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
281 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
282 |
+
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
283 |
+
|
284 |
+
|
285 |
+
class Expand(nn.Module):
|
286 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
287 |
+
def __init__(self, gain=2):
|
288 |
+
super().__init__()
|
289 |
+
self.gain = gain
|
290 |
+
|
291 |
+
def forward(self, x):
|
292 |
+
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
293 |
+
s = self.gain
|
294 |
+
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
295 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
296 |
+
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
297 |
+
|
298 |
+
|
299 |
+
class Concat(nn.Module):
|
300 |
+
# Concatenate a list of tensors along dimension
|
301 |
+
def __init__(self, dimension=1):
|
302 |
+
super().__init__()
|
303 |
+
self.d = dimension
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
return torch.cat(x, self.d)
|
307 |
+
|
308 |
+
|
309 |
+
class DetectMultiBackend(nn.Module):
|
310 |
+
# YOLOv5 MultiBackend class for python inference on various backends
|
311 |
+
def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
312 |
+
# Usage:
|
313 |
+
# PyTorch: weights = *.pt
|
314 |
+
from models.experimental import attempt_load # scoped to avoid circular import
|
315 |
+
|
316 |
+
super().__init__()
|
317 |
+
w = str(weights[0] if isinstance(weights, list) else weights)
|
318 |
+
pt = self._model_type(w)[0]
|
319 |
+
fp16 = True # FP16
|
320 |
+
nhwc = False # BHWC formats (vs torch BCWH)
|
321 |
+
stride = 32 # default stride
|
322 |
+
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
323 |
+
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
|
324 |
+
stride = max(int(model.stride.max()), 32) # model stride
|
325 |
+
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
326 |
+
model.half() if fp16 else model.float()
|
327 |
+
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
328 |
+
|
329 |
+
# class names
|
330 |
+
if 'names' not in locals():
|
331 |
+
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
332 |
+
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
333 |
+
names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
|
334 |
+
|
335 |
+
self.__dict__.update(locals()) # assign all variables to self
|
336 |
+
|
337 |
+
def forward(self, im, augment=False, visualize=False):
|
338 |
+
# YOLOv5 MultiBackend inference
|
339 |
+
b, ch, h, w = im.shape # batch, channel, height, width
|
340 |
+
if self.fp16 and im.dtype != torch.float16:
|
341 |
+
im = im.half() # to FP16
|
342 |
+
if self.nhwc:
|
343 |
+
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
344 |
+
|
345 |
+
if self.pt: # PyTorch
|
346 |
+
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
347 |
+
|
348 |
+
if isinstance(y, (list, tuple)):
|
349 |
+
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
350 |
+
else:
|
351 |
+
return self.from_numpy(y)
|
352 |
+
|
353 |
+
def from_numpy(self, x):
|
354 |
+
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
355 |
+
|
356 |
+
def warmup(self, imgsz=(1, 3, 640, 640)):
|
357 |
+
# Warmup model by running inference once
|
358 |
+
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
|
359 |
+
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
360 |
+
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
361 |
+
for _ in range(2 if self.jit else 1): #
|
362 |
+
self.forward(im) # warmup
|
363 |
+
|
364 |
+
@staticmethod
|
365 |
+
def _model_type(p='path/to/model.pt'):
|
366 |
+
|
367 |
+
def export_formats():
|
368 |
+
x = [['PyTorch', '-', '.pt', True, True],]
|
369 |
+
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
370 |
+
|
371 |
+
sf = list(export_formats().Suffix) # export suffixes
|
372 |
+
url = urlparse(p) # if url may be Triton inference server
|
373 |
+
types = [s in Path(p).name for s in sf]
|
374 |
+
triton = False
|
375 |
+
return types + [triton]
|
376 |
+
|
377 |
+
@staticmethod
|
378 |
+
def _load_metadata(f=Path('path/to/meta.yaml')):
|
379 |
+
# Load metadata from meta.yaml if it exists
|
380 |
+
if f.exists():
|
381 |
+
d = yaml_load(f)
|
382 |
+
return d['stride'], d['names'] # assign stride, names
|
383 |
+
return None, None
|
384 |
+
|
385 |
+
|
386 |
+
class AutoShape(nn.Module):
|
387 |
+
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
388 |
+
conf = 0.25 # NMS confidence threshold
|
389 |
+
iou = 0.45 # NMS IoU threshold
|
390 |
+
agnostic = False # NMS class-agnostic
|
391 |
+
multi_label = False # NMS multiple labels per box
|
392 |
+
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
393 |
+
max_det = 1000 # maximum number of detections per image
|
394 |
+
amp = False # Automatic Mixed Precision (AMP) inference
|
395 |
+
|
396 |
+
def __init__(self, model, verbose=True):
|
397 |
+
super().__init__()
|
398 |
+
if verbose:
|
399 |
+
LOGGER.info('Adding AutoShape... ')
|
400 |
+
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
401 |
+
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
402 |
+
self.pt = not self.dmb or model.pt # PyTorch model
|
403 |
+
self.model = model.eval()
|
404 |
+
if self.pt:
|
405 |
+
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
406 |
+
m.inplace = False # Detect.inplace=False for safe multithread inference
|
407 |
+
m.export = True # do not output loss values
|
408 |
+
|
409 |
+
def _apply(self, fn):
|
410 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
411 |
+
self = super()._apply(fn)
|
412 |
+
if self.pt:
|
413 |
+
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
414 |
+
m.stride = fn(m.stride)
|
415 |
+
m.grid = list(map(fn, m.grid))
|
416 |
+
if isinstance(m.anchor_grid, list):
|
417 |
+
m.anchor_grid = list(map(fn, m.anchor_grid))
|
418 |
+
return self
|
419 |
+
|
420 |
+
@smart_inference_mode()
|
421 |
+
def forward(self, ims, size=640, augment=False, profile=False):
|
422 |
+
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
423 |
+
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
424 |
+
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
425 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
426 |
+
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
427 |
+
# numpy: = np.zeros((640,1280,3)) # HWC
|
428 |
+
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
429 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
430 |
+
|
431 |
+
dt = (Profile(), Profile(), Profile())
|
432 |
+
with dt[0]:
|
433 |
+
if isinstance(size, int): # expand
|
434 |
+
size = (size, size)
|
435 |
+
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
436 |
+
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
437 |
+
if isinstance(ims, torch.Tensor): # torch
|
438 |
+
with amp.autocast(autocast):
|
439 |
+
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
440 |
+
|
441 |
+
# Pre-process
|
442 |
+
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
443 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
444 |
+
for i, im in enumerate(ims):
|
445 |
+
f = f'image{i}' # filename
|
446 |
+
if isinstance(im, (str, Path)): # filename or uri
|
447 |
+
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
448 |
+
im = np.asarray(exif_transpose(im))
|
449 |
+
elif isinstance(im, Image.Image): # PIL Image
|
450 |
+
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
451 |
+
files.append(Path(f).with_suffix('.jpg').name)
|
452 |
+
if im.shape[0] < 5: # image in CHW
|
453 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
454 |
+
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
455 |
+
s = im.shape[:2] # HWC
|
456 |
+
shape0.append(s) # image shape
|
457 |
+
g = max(size) / max(s) # gain
|
458 |
+
shape1.append([int(y * g) for y in s])
|
459 |
+
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
460 |
+
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
|
461 |
+
x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
|
462 |
+
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
463 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
464 |
+
|
465 |
+
with amp.autocast(autocast):
|
466 |
+
# Inference
|
467 |
+
with dt[1]:
|
468 |
+
y = self.model(x, augment=augment) # forward
|
469 |
+
|
470 |
+
# Post-process
|
471 |
+
with dt[2]:
|
472 |
+
y = non_max_suppression(y if self.dmb else y[0],
|
473 |
+
self.conf,
|
474 |
+
self.iou,
|
475 |
+
self.classes,
|
476 |
+
self.agnostic,
|
477 |
+
self.multi_label,
|
478 |
+
max_det=self.max_det) # NMS
|
479 |
+
for i in range(n):
|
480 |
+
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
481 |
+
|
482 |
+
return Detections(ims, y, files, dt, self.names, x.shape)
|
483 |
+
|
484 |
+
|
485 |
+
class Detections:
|
486 |
+
# YOLOv5 detections class for inference results
|
487 |
+
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
488 |
+
super().__init__()
|
489 |
+
d = pred[0].device # device
|
490 |
+
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
491 |
+
self.ims = ims # list of images as numpy arrays
|
492 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
493 |
+
self.names = names # class names
|
494 |
+
self.files = files # image filenames
|
495 |
+
self.times = times # profiling times
|
496 |
+
self.xyxy = pred # xyxy pixels
|
497 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
498 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
499 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
500 |
+
self.n = len(self.pred) # number of images (batch size)
|
501 |
+
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
502 |
+
self.s = tuple(shape) # inference BCHW shape
|
503 |
+
|
504 |
+
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
505 |
+
s, crops = '', []
|
506 |
+
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
507 |
+
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
508 |
+
if pred.shape[0]:
|
509 |
+
for c in pred[:, -1].unique():
|
510 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
511 |
+
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
512 |
+
s = s.rstrip(', ')
|
513 |
+
if show or save or render or crop:
|
514 |
+
annotator = Annotator(im, example=str(self.names))
|
515 |
+
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
516 |
+
label = f'{self.names[int(cls)]} {conf:.2f}'
|
517 |
+
if crop:
|
518 |
+
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
519 |
+
crops.append({
|
520 |
+
'box': box,
|
521 |
+
'conf': conf,
|
522 |
+
'cls': cls,
|
523 |
+
'label': label,
|
524 |
+
'im': save_one_box(box, im, file=file, save=save)})
|
525 |
+
else: # all others
|
526 |
+
annotator.box_label(box, label if labels else '', color=colors(cls))
|
527 |
+
im = annotator.im
|
528 |
+
else:
|
529 |
+
s += '(no detections)'
|
530 |
+
|
531 |
+
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
532 |
+
if show:
|
533 |
+
display(im) if is_notebook() else im.show(self.files[i])
|
534 |
+
if save:
|
535 |
+
f = self.files[i]
|
536 |
+
im.save(save_dir / f) # save
|
537 |
+
if i == self.n - 1:
|
538 |
+
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
539 |
+
if render:
|
540 |
+
self.ims[i] = np.asarray(im)
|
541 |
+
if pprint:
|
542 |
+
s = s.lstrip('\n')
|
543 |
+
return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
|
544 |
+
if crop:
|
545 |
+
if save:
|
546 |
+
LOGGER.info(f'Saved results to {save_dir}\n')
|
547 |
+
return crops
|
548 |
+
|
549 |
+
@TryExcept('Showing images is not supported in this environment')
|
550 |
+
def show(self, labels=True):
|
551 |
+
self._run(show=True, labels=labels) # show results
|
552 |
+
|
553 |
+
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
|
554 |
+
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
555 |
+
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
556 |
+
|
557 |
+
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
|
558 |
+
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
559 |
+
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
560 |
+
|
561 |
+
def render(self, labels=True):
|
562 |
+
self._run(render=True, labels=labels) # render results
|
563 |
+
return self.ims
|
564 |
+
|
565 |
+
def pandas(self):
|
566 |
+
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
567 |
+
new = copy(self) # return copy
|
568 |
+
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
569 |
+
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
570 |
+
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
571 |
+
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
572 |
+
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
573 |
+
return new
|
574 |
+
|
575 |
+
def tolist(self):
|
576 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
577 |
+
r = range(self.n) # iterable
|
578 |
+
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
579 |
+
# for d in x:
|
580 |
+
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
581 |
+
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
582 |
+
return x
|
583 |
+
|
584 |
+
def print(self):
|
585 |
+
LOGGER.info(self.__str__())
|
586 |
+
|
587 |
+
def __len__(self): # override len(results)
|
588 |
+
return self.n
|
589 |
+
|
590 |
+
def __str__(self): # override print(results)
|
591 |
+
return self._run(pprint=True) # print results
|
592 |
+
|
593 |
+
def __repr__(self):
|
594 |
+
return f'YOLOv5 {self.__class__} instance\n' + self.__str__()
|
595 |
+
|
596 |
+
|
597 |
+
class Proto(nn.Module):
|
598 |
+
# YOLOv5 mask Proto module for segmentation models
|
599 |
+
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
600 |
+
super().__init__()
|
601 |
+
self.cv1 = Conv(c1, c_, k=3)
|
602 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
603 |
+
self.cv2 = Conv(c_, c_, k=3)
|
604 |
+
self.cv3 = Conv(c_, c2)
|
605 |
+
|
606 |
+
def forward(self, x):
|
607 |
+
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
608 |
+
|
609 |
+
|
610 |
+
class Classify(nn.Module):
|
611 |
+
# YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
612 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
613 |
+
super().__init__()
|
614 |
+
c_ = 1280 # efficientnet_b0 size
|
615 |
+
self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
|
616 |
+
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
617 |
+
self.drop = nn.Dropout(p=0.0, inplace=True)
|
618 |
+
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
619 |
+
|
620 |
+
def forward(self, x):
|
621 |
+
if isinstance(x, list):
|
622 |
+
x = torch.cat(x, 1)
|
623 |
+
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
models/experimental.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Experimental modules
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
class Sum(nn.Module):
|
12 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
13 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
14 |
+
super().__init__()
|
15 |
+
self.weight = weight # apply weights boolean
|
16 |
+
self.iter = range(n - 1) # iter object
|
17 |
+
if weight:
|
18 |
+
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
y = x[0] # no weight
|
22 |
+
if self.weight:
|
23 |
+
w = torch.sigmoid(self.w) * 2
|
24 |
+
for i in self.iter:
|
25 |
+
y = y + x[i + 1] * w[i]
|
26 |
+
else:
|
27 |
+
for i in self.iter:
|
28 |
+
y = y + x[i + 1]
|
29 |
+
return y
|
30 |
+
|
31 |
+
|
32 |
+
class MixConv2d(nn.Module):
|
33 |
+
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
|
34 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
|
35 |
+
super().__init__()
|
36 |
+
n = len(k) # number of convolutions
|
37 |
+
if equal_ch: # equal c_ per group
|
38 |
+
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
|
39 |
+
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
|
40 |
+
else: # equal weight.numel() per group
|
41 |
+
b = [c2] + [0] * n
|
42 |
+
a = np.eye(n + 1, n, k=-1)
|
43 |
+
a -= np.roll(a, 1, axis=1)
|
44 |
+
a *= np.array(k) ** 2
|
45 |
+
a[0] = 1
|
46 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
47 |
+
|
48 |
+
self.m = nn.ModuleList([
|
49 |
+
nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
|
50 |
+
self.bn = nn.BatchNorm2d(c2)
|
51 |
+
self.act = nn.SiLU()
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
55 |
+
|
56 |
+
|
57 |
+
class Ensemble(nn.ModuleList):
|
58 |
+
# Ensemble of models
|
59 |
+
def __init__(self):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
63 |
+
y = [module(x, augment, profile, visualize)[0] for module in self]
|
64 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
65 |
+
# y = torch.stack(y).mean(0) # mean ensemble
|
66 |
+
y = torch.cat(y, 1) # nms ensemble
|
67 |
+
return y, None # inference, train output
|
68 |
+
|
69 |
+
|
70 |
+
def attempt_load(weights, device=None, inplace=True, fuse=True):
|
71 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
72 |
+
from models.yolo import Detect, Model
|
73 |
+
|
74 |
+
model = Ensemble()
|
75 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
76 |
+
ckpt = torch.load(w, map_location='cpu') # load
|
77 |
+
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
78 |
+
|
79 |
+
# Model compatibility updates
|
80 |
+
if not hasattr(ckpt, 'stride'):
|
81 |
+
ckpt.stride = torch.tensor([32.])
|
82 |
+
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
83 |
+
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
|
84 |
+
|
85 |
+
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
86 |
+
|
87 |
+
# Module compatibility updates
|
88 |
+
for m in model.modules():
|
89 |
+
t = type(m)
|
90 |
+
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
91 |
+
m.inplace = inplace # torch 1.7.0 compatibility
|
92 |
+
if t is Detect and not isinstance(m.anchor_grid, list):
|
93 |
+
delattr(m, 'anchor_grid')
|
94 |
+
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
95 |
+
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
96 |
+
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
97 |
+
|
98 |
+
# Return model
|
99 |
+
if len(model) == 1:
|
100 |
+
return model[-1]
|
101 |
+
|
102 |
+
# Return detection ensemble
|
103 |
+
print(f'Ensemble created with {weights}\n')
|
104 |
+
for k in 'names', 'nc', 'yaml':
|
105 |
+
setattr(model, k, getattr(model[0], k))
|
106 |
+
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
107 |
+
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
108 |
+
return model
|
models/hub/anchors.yaml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Default anchors for COCO data
|
3 |
+
|
4 |
+
|
5 |
+
# P5 -------------------------------------------------------------------------------------------------------------------
|
6 |
+
# P5-640:
|
7 |
+
anchors_p5_640:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
|
13 |
+
# P6 -------------------------------------------------------------------------------------------------------------------
|
14 |
+
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
15 |
+
anchors_p6_640:
|
16 |
+
- [9,11, 21,19, 17,41] # P3/8
|
17 |
+
- [43,32, 39,70, 86,64] # P4/16
|
18 |
+
- [65,131, 134,130, 120,265] # P5/32
|
19 |
+
- [282,180, 247,354, 512,387] # P6/64
|
20 |
+
|
21 |
+
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
22 |
+
anchors_p6_1280:
|
23 |
+
- [19,27, 44,40, 38,94] # P3/8
|
24 |
+
- [96,68, 86,152, 180,137] # P4/16
|
25 |
+
- [140,301, 303,264, 238,542] # P5/32
|
26 |
+
- [436,615, 739,380, 925,792] # P6/64
|
27 |
+
|
28 |
+
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
29 |
+
anchors_p6_1920:
|
30 |
+
- [28,41, 67,59, 57,141] # P3/8
|
31 |
+
- [144,103, 129,227, 270,205] # P4/16
|
32 |
+
- [209,452, 455,396, 358,812] # P5/32
|
33 |
+
- [653,922, 1109,570, 1387,1187] # P6/64
|
34 |
+
|
35 |
+
|
36 |
+
# P7 -------------------------------------------------------------------------------------------------------------------
|
37 |
+
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
38 |
+
anchors_p7_640:
|
39 |
+
- [11,11, 13,30, 29,20] # P3/8
|
40 |
+
- [30,46, 61,38, 39,92] # P4/16
|
41 |
+
- [78,80, 146,66, 79,163] # P5/32
|
42 |
+
- [149,150, 321,143, 157,303] # P6/64
|
43 |
+
- [257,402, 359,290, 524,372] # P7/128
|
44 |
+
|
45 |
+
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
46 |
+
anchors_p7_1280:
|
47 |
+
- [19,22, 54,36, 32,77] # P3/8
|
48 |
+
- [70,83, 138,71, 75,173] # P4/16
|
49 |
+
- [165,159, 148,334, 375,151] # P5/32
|
50 |
+
- [334,317, 251,626, 499,474] # P6/64
|
51 |
+
- [750,326, 534,814, 1079,818] # P7/128
|
52 |
+
|
53 |
+
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
54 |
+
anchors_p7_1920:
|
55 |
+
- [29,34, 81,55, 47,115] # P3/8
|
56 |
+
- [105,124, 207,107, 113,259] # P4/16
|
57 |
+
- [247,238, 222,500, 563,227] # P5/32
|
58 |
+
- [501,476, 376,939, 749,711] # P6/64
|
59 |
+
- [1126,489, 801,1222, 1618,1227] # P7/128
|
models/hub/yolov5-bifpn.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 BiFPN head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/hub/yolov5-fpn.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 FPN head
|
28 |
+
head:
|
29 |
+
[[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
|
30 |
+
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 3, C3, [512, False]], # 14 (P4/16-medium)
|
35 |
+
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 3, C3, [256, False]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
42 |
+
]
|
models/hub/yolov5-p2.yaml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
+
|
9 |
+
# YOLOv5 v6.0 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
+
[-1, 3, C3, [128]],
|
15 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
+
[-1, 6, C3, [256]],
|
17 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
+
[-1, 9, C3, [512]],
|
19 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
20 |
+
[-1, 3, C3, [1024]],
|
21 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
22 |
+
]
|
23 |
+
|
24 |
+
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
|
25 |
+
head:
|
26 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
27 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
28 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
29 |
+
[-1, 3, C3, [512, False]], # 13
|
30 |
+
|
31 |
+
[-1, 1, Conv, [256, 1, 1]],
|
32 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
34 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
35 |
+
|
36 |
+
[-1, 1, Conv, [128, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 2], 1, Concat, [1]], # cat backbone P2
|
39 |
+
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
|
40 |
+
|
41 |
+
[-1, 1, Conv, [128, 3, 2]],
|
42 |
+
[[-1, 18], 1, Concat, [1]], # cat head P3
|
43 |
+
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
|
44 |
+
|
45 |
+
[-1, 1, Conv, [256, 3, 2]],
|
46 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
47 |
+
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
|
48 |
+
|
49 |
+
[-1, 1, Conv, [512, 3, 2]],
|
50 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
51 |
+
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
|
52 |
+
|
53 |
+
[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
|
54 |
+
]
|
models/hub/yolov5-p34.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
+
|
9 |
+
# YOLOv5 v6.0 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
|
13 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
14 |
+
[ -1, 3, C3, [ 128 ] ],
|
15 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
16 |
+
[ -1, 6, C3, [ 256 ] ],
|
17 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
18 |
+
[ -1, 9, C3, [ 512 ] ],
|
19 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
20 |
+
[ -1, 3, C3, [ 1024 ] ],
|
21 |
+
[ -1, 1, SPPF, [ 1024, 5 ] ], # 9
|
22 |
+
]
|
23 |
+
|
24 |
+
# YOLOv5 v6.0 head with (P3, P4) outputs
|
25 |
+
head:
|
26 |
+
[ [ -1, 1, Conv, [ 512, 1, 1 ] ],
|
27 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
28 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
29 |
+
[ -1, 3, C3, [ 512, False ] ], # 13
|
30 |
+
|
31 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
32 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
33 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
34 |
+
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
|
35 |
+
|
36 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
37 |
+
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
|
38 |
+
[ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
|
39 |
+
|
40 |
+
[ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
|
41 |
+
]
|
models/hub/yolov5-p6.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
+
|
9 |
+
# YOLOv5 v6.0 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
+
[-1, 3, C3, [128]],
|
15 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
+
[-1, 6, C3, [256]],
|
17 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
+
[-1, 9, C3, [512]],
|
19 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
20 |
+
[-1, 3, C3, [768]],
|
21 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
22 |
+
[-1, 3, C3, [1024]],
|
23 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
24 |
+
]
|
25 |
+
|
26 |
+
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
|
27 |
+
head:
|
28 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
29 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
30 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
31 |
+
[-1, 3, C3, [768, False]], # 15
|
32 |
+
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
36 |
+
[-1, 3, C3, [512, False]], # 19
|
37 |
+
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
40 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
41 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [256, 3, 2]],
|
44 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
45 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [512, 3, 2]],
|
48 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
49 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [768, 3, 2]],
|
52 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
53 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
54 |
+
|
55 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
56 |
+
]
|
models/hub/yolov5-p7.yaml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
+
|
9 |
+
# YOLOv5 v6.0 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
+
[-1, 3, C3, [128]],
|
15 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
+
[-1, 6, C3, [256]],
|
17 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
+
[-1, 9, C3, [512]],
|
19 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
20 |
+
[-1, 3, C3, [768]],
|
21 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
22 |
+
[-1, 3, C3, [1024]],
|
23 |
+
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
|
24 |
+
[-1, 3, C3, [1280]],
|
25 |
+
[-1, 1, SPPF, [1280, 5]], # 13
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
|
29 |
+
head:
|
30 |
+
[[-1, 1, Conv, [1024, 1, 1]],
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 10], 1, Concat, [1]], # cat backbone P6
|
33 |
+
[-1, 3, C3, [1024, False]], # 17
|
34 |
+
|
35 |
+
[-1, 1, Conv, [768, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
38 |
+
[-1, 3, C3, [768, False]], # 21
|
39 |
+
|
40 |
+
[-1, 1, Conv, [512, 1, 1]],
|
41 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
42 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
43 |
+
[-1, 3, C3, [512, False]], # 25
|
44 |
+
|
45 |
+
[-1, 1, Conv, [256, 1, 1]],
|
46 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
47 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
48 |
+
[-1, 3, C3, [256, False]], # 29 (P3/8-small)
|
49 |
+
|
50 |
+
[-1, 1, Conv, [256, 3, 2]],
|
51 |
+
[[-1, 26], 1, Concat, [1]], # cat head P4
|
52 |
+
[-1, 3, C3, [512, False]], # 32 (P4/16-medium)
|
53 |
+
|
54 |
+
[-1, 1, Conv, [512, 3, 2]],
|
55 |
+
[[-1, 22], 1, Concat, [1]], # cat head P5
|
56 |
+
[-1, 3, C3, [768, False]], # 35 (P5/32-large)
|
57 |
+
|
58 |
+
[-1, 1, Conv, [768, 3, 2]],
|
59 |
+
[[-1, 18], 1, Concat, [1]], # cat head P6
|
60 |
+
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
|
61 |
+
|
62 |
+
[-1, 1, Conv, [1024, 3, 2]],
|
63 |
+
[[-1, 14], 1, Concat, [1]], # cat head P7
|
64 |
+
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
|
65 |
+
|
66 |
+
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
|
67 |
+
]
|
models/hub/yolov5-panet.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 PANet head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/hub/yolov5l6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/hub/yolov5m6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.67 # model depth multiple
|
6 |
+
width_multiple: 0.75 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/hub/yolov5n6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/hub/yolov5s-LeakyReLU.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
activation: nn.LeakyReLU(0.1) # <----- Conv() activation used throughout entire YOLOv5 model
|
6 |
+
depth_multiple: 0.33 # model depth multiple
|
7 |
+
width_multiple: 0.50 # layer channel multiple
|
8 |
+
anchors:
|
9 |
+
- [10,13, 16,30, 33,23] # P3/8
|
10 |
+
- [30,61, 62,45, 59,119] # P4/16
|
11 |
+
- [116,90, 156,198, 373,326] # P5/32
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [1024]],
|
25 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv5 v6.0 head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 3, C3, [512, False]], # 13
|
34 |
+
|
35 |
+
[-1, 1, Conv, [256, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
39 |
+
|
40 |
+
[-1, 1, Conv, [256, 3, 2]],
|
41 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
42 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
43 |
+
|
44 |
+
[-1, 1, Conv, [512, 3, 2]],
|
45 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
46 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
47 |
+
|
48 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
49 |
+
]
|
models/hub/yolov5s-ghost.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3Ghost, [128]],
|
18 |
+
[-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3Ghost, [256]],
|
20 |
+
[-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3Ghost, [512]],
|
22 |
+
[-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3Ghost, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, GhostConv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3Ghost, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, GhostConv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, GhostConv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, GhostConv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/hub/yolov5s-transformer.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/hub/yolov5s6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/hub/yolov5x6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.33 # model depth multiple
|
6 |
+
width_multiple: 1.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/yolo.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
YOLO-specific modules
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
$ python models/yolo.py --cfg yolov5s.yaml
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import contextlib
|
11 |
+
import os
|
12 |
+
import platform
|
13 |
+
import sys
|
14 |
+
from copy import deepcopy
|
15 |
+
from pathlib import Path
|
16 |
+
|
17 |
+
FILE = Path(__file__).resolve()
|
18 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
19 |
+
if str(ROOT) not in sys.path:
|
20 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
21 |
+
if platform.system() != 'Windows':
|
22 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
23 |
+
|
24 |
+
from models.common import *
|
25 |
+
from models.experimental import *
|
26 |
+
from utils.autoanchor import check_anchor_order
|
27 |
+
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
|
28 |
+
from utils.plots import feature_visualization
|
29 |
+
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
|
30 |
+
time_sync)
|
31 |
+
|
32 |
+
try:
|
33 |
+
import thop # for FLOPs computation
|
34 |
+
except ImportError:
|
35 |
+
thop = None
|
36 |
+
|
37 |
+
|
38 |
+
class Detect(nn.Module):
|
39 |
+
# YOLOv5 Detect head for detection models
|
40 |
+
stride = None # strides computed during build
|
41 |
+
dynamic = False # force grid reconstruction
|
42 |
+
export = False # export mode
|
43 |
+
|
44 |
+
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
|
45 |
+
super().__init__()
|
46 |
+
self.nc = nc # number of classes
|
47 |
+
self.no = nc + 5 # number of outputs per anchor
|
48 |
+
self.nl = len(anchors) # number of detection layers
|
49 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
50 |
+
self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid
|
51 |
+
self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid
|
52 |
+
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
53 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
54 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
z = [] # inference output
|
58 |
+
for i in range(self.nl):
|
59 |
+
x[i] = self.m[i](x[i]) # conv
|
60 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
61 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
62 |
+
|
63 |
+
if not self.training: # inference
|
64 |
+
if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
65 |
+
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
66 |
+
|
67 |
+
if isinstance(self, Segment): # (boxes + masks)
|
68 |
+
xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
|
69 |
+
xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy
|
70 |
+
wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh
|
71 |
+
y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
|
72 |
+
else: # Detect (boxes only)
|
73 |
+
xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
|
74 |
+
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
|
75 |
+
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
|
76 |
+
y = torch.cat((xy, wh, conf), 4)
|
77 |
+
z.append(y.view(bs, self.na * nx * ny, self.no))
|
78 |
+
|
79 |
+
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
|
80 |
+
|
81 |
+
def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
|
82 |
+
d = self.anchors[i].device
|
83 |
+
t = self.anchors[i].dtype
|
84 |
+
shape = 1, self.na, ny, nx, 2 # grid shape
|
85 |
+
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
|
86 |
+
yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility
|
87 |
+
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
|
88 |
+
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
|
89 |
+
return grid, anchor_grid
|
90 |
+
|
91 |
+
|
92 |
+
class Segment(Detect):
|
93 |
+
# YOLOv5 Segment head for segmentation models
|
94 |
+
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
|
95 |
+
super().__init__(nc, anchors, ch, inplace)
|
96 |
+
self.nm = nm # number of masks
|
97 |
+
self.npr = npr # number of protos
|
98 |
+
self.no = 5 + nc + self.nm # number of outputs per anchor
|
99 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
100 |
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
101 |
+
self.detect = Detect.forward
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
p = self.proto(x[0])
|
105 |
+
x = self.detect(self, x)
|
106 |
+
return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
|
107 |
+
|
108 |
+
|
109 |
+
class BaseModel(nn.Module):
|
110 |
+
# YOLOv5 base model
|
111 |
+
def forward(self, x, profile=False, visualize=False):
|
112 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
113 |
+
|
114 |
+
def _forward_once(self, x, profile=False, visualize=False):
|
115 |
+
y, dt = [], [] # outputs
|
116 |
+
for m in self.model:
|
117 |
+
if m.f != -1: # if not from previous layer
|
118 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
119 |
+
if profile:
|
120 |
+
self._profile_one_layer(m, x, dt)
|
121 |
+
x = m(x) # run
|
122 |
+
y.append(x if m.i in self.save else None) # save output
|
123 |
+
if visualize:
|
124 |
+
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
125 |
+
return x
|
126 |
+
|
127 |
+
def _profile_one_layer(self, m, x, dt):
|
128 |
+
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
129 |
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
130 |
+
t = time_sync()
|
131 |
+
for _ in range(10):
|
132 |
+
m(x.copy() if c else x)
|
133 |
+
dt.append((time_sync() - t) * 100)
|
134 |
+
if m == self.model[0]:
|
135 |
+
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
136 |
+
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
137 |
+
if c:
|
138 |
+
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
139 |
+
|
140 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
141 |
+
LOGGER.info('Fusing layers... ')
|
142 |
+
for m in self.model.modules():
|
143 |
+
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
144 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
145 |
+
delattr(m, 'bn') # remove batchnorm
|
146 |
+
m.forward = m.forward_fuse # update forward
|
147 |
+
self.info()
|
148 |
+
return self
|
149 |
+
|
150 |
+
def info(self, verbose=False, img_size=640): # print model information
|
151 |
+
model_info(self, verbose, img_size)
|
152 |
+
|
153 |
+
def _apply(self, fn):
|
154 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
155 |
+
self = super()._apply(fn)
|
156 |
+
m = self.model[-1] # Detect()
|
157 |
+
if isinstance(m, (Detect, Segment)):
|
158 |
+
m.stride = fn(m.stride)
|
159 |
+
m.grid = list(map(fn, m.grid))
|
160 |
+
if isinstance(m.anchor_grid, list):
|
161 |
+
m.anchor_grid = list(map(fn, m.anchor_grid))
|
162 |
+
return self
|
163 |
+
|
164 |
+
|
165 |
+
class DetectionModel(BaseModel):
|
166 |
+
# YOLOv5 detection model
|
167 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
168 |
+
super().__init__()
|
169 |
+
if isinstance(cfg, dict):
|
170 |
+
self.yaml = cfg # model dict
|
171 |
+
else: # is *.yaml
|
172 |
+
import yaml # for torch hub
|
173 |
+
self.yaml_file = Path(cfg).name
|
174 |
+
with open(cfg, encoding='ascii', errors='ignore') as f:
|
175 |
+
self.yaml = yaml.safe_load(f) # model dict
|
176 |
+
|
177 |
+
# Define model
|
178 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
179 |
+
if nc and nc != self.yaml['nc']:
|
180 |
+
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
181 |
+
self.yaml['nc'] = nc # override yaml value
|
182 |
+
if anchors:
|
183 |
+
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
184 |
+
self.yaml['anchors'] = round(anchors) # override yaml value
|
185 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
186 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
187 |
+
self.inplace = self.yaml.get('inplace', True)
|
188 |
+
|
189 |
+
# Build strides, anchors
|
190 |
+
m = self.model[-1] # Detect()
|
191 |
+
if isinstance(m, (Detect, Segment)):
|
192 |
+
s = 256 # 2x min stride
|
193 |
+
m.inplace = self.inplace
|
194 |
+
forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
|
195 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
196 |
+
check_anchor_order(m)
|
197 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
198 |
+
self.stride = m.stride
|
199 |
+
self._initialize_biases() # only run once
|
200 |
+
|
201 |
+
# Init weights, biases
|
202 |
+
initialize_weights(self)
|
203 |
+
self.info()
|
204 |
+
LOGGER.info('')
|
205 |
+
|
206 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
207 |
+
if augment:
|
208 |
+
return self._forward_augment(x) # augmented inference, None
|
209 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
210 |
+
|
211 |
+
def _forward_augment(self, x):
|
212 |
+
img_size = x.shape[-2:] # height, width
|
213 |
+
s = [1, 0.83, 0.67] # scales
|
214 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
215 |
+
y = [] # outputs
|
216 |
+
for si, fi in zip(s, f):
|
217 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
218 |
+
yi = self._forward_once(xi)[0] # forward
|
219 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
220 |
+
yi = self._descale_pred(yi, fi, si, img_size)
|
221 |
+
y.append(yi)
|
222 |
+
y = self._clip_augmented(y) # clip augmented tails
|
223 |
+
return torch.cat(y, 1), None # augmented inference, train
|
224 |
+
|
225 |
+
def _descale_pred(self, p, flips, scale, img_size):
|
226 |
+
# de-scale predictions following augmented inference (inverse operation)
|
227 |
+
if self.inplace:
|
228 |
+
p[..., :4] /= scale # de-scale
|
229 |
+
if flips == 2:
|
230 |
+
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
231 |
+
elif flips == 3:
|
232 |
+
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
233 |
+
else:
|
234 |
+
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
235 |
+
if flips == 2:
|
236 |
+
y = img_size[0] - y # de-flip ud
|
237 |
+
elif flips == 3:
|
238 |
+
x = img_size[1] - x # de-flip lr
|
239 |
+
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
240 |
+
return p
|
241 |
+
|
242 |
+
def _clip_augmented(self, y):
|
243 |
+
# Clip YOLOv5 augmented inference tails
|
244 |
+
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
245 |
+
g = sum(4 ** x for x in range(nl)) # grid points
|
246 |
+
e = 1 # exclude layer count
|
247 |
+
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
248 |
+
y[0] = y[0][:, :-i] # large
|
249 |
+
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
250 |
+
y[-1] = y[-1][:, i:] # small
|
251 |
+
return y
|
252 |
+
|
253 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
254 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
255 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
256 |
+
m = self.model[-1] # Detect() module
|
257 |
+
for mi, s in zip(m.m, m.stride): # from
|
258 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
259 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
260 |
+
b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum()) # cls
|
261 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
262 |
+
|
263 |
+
|
264 |
+
Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility
|
265 |
+
|
266 |
+
|
267 |
+
class SegmentationModel(DetectionModel):
|
268 |
+
# YOLOv5 segmentation model
|
269 |
+
def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None):
|
270 |
+
super().__init__(cfg, ch, nc, anchors)
|
271 |
+
|
272 |
+
|
273 |
+
class ClassificationModel(BaseModel):
|
274 |
+
# YOLOv5 classification model
|
275 |
+
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
|
276 |
+
super().__init__()
|
277 |
+
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
278 |
+
|
279 |
+
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
280 |
+
# Create a YOLOv5 classification model from a YOLOv5 detection model
|
281 |
+
if isinstance(model, DetectMultiBackend):
|
282 |
+
model = model.model # unwrap DetectMultiBackend
|
283 |
+
model.model = model.model[:cutoff] # backbone
|
284 |
+
m = model.model[-1] # last layer
|
285 |
+
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
|
286 |
+
c = Classify(ch, nc) # Classify()
|
287 |
+
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
|
288 |
+
model.model[-1] = c # replace
|
289 |
+
self.model = model.model
|
290 |
+
self.stride = model.stride
|
291 |
+
self.save = []
|
292 |
+
self.nc = nc
|
293 |
+
|
294 |
+
def _from_yaml(self, cfg):
|
295 |
+
# Create a YOLOv5 classification model from a *.yaml file
|
296 |
+
self.model = None
|
297 |
+
|
298 |
+
|
299 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
300 |
+
# Parse a YOLOv5 model.yaml dictionary
|
301 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
302 |
+
anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
303 |
+
if act:
|
304 |
+
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
305 |
+
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
306 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
307 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
308 |
+
|
309 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
310 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
311 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
312 |
+
for j, a in enumerate(args):
|
313 |
+
with contextlib.suppress(NameError):
|
314 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
315 |
+
|
316 |
+
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
317 |
+
if m in {
|
318 |
+
Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
|
319 |
+
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
|
320 |
+
c1, c2 = ch[f], args[0]
|
321 |
+
if c2 != no: # if not output
|
322 |
+
c2 = make_divisible(c2 * gw, 8)
|
323 |
+
|
324 |
+
args = [c1, c2, *args[1:]]
|
325 |
+
if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
|
326 |
+
args.insert(2, n) # number of repeats
|
327 |
+
n = 1
|
328 |
+
elif m is nn.BatchNorm2d:
|
329 |
+
args = [ch[f]]
|
330 |
+
elif m is Concat:
|
331 |
+
c2 = sum(ch[x] for x in f)
|
332 |
+
# TODO: channel, gw, gd
|
333 |
+
elif m in {Detect, Segment}:
|
334 |
+
args.append([ch[x] for x in f])
|
335 |
+
if isinstance(args[1], int): # number of anchors
|
336 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
337 |
+
if m is Segment:
|
338 |
+
args[3] = make_divisible(args[3] * gw, 8)
|
339 |
+
elif m is Contract:
|
340 |
+
c2 = ch[f] * args[0] ** 2
|
341 |
+
elif m is Expand:
|
342 |
+
c2 = ch[f] // args[0] ** 2
|
343 |
+
else:
|
344 |
+
c2 = ch[f]
|
345 |
+
|
346 |
+
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
347 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
348 |
+
np = sum(x.numel() for x in m_.parameters()) # number params
|
349 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
350 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
351 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
352 |
+
layers.append(m_)
|
353 |
+
if i == 0:
|
354 |
+
ch = []
|
355 |
+
ch.append(c2)
|
356 |
+
return nn.Sequential(*layers), sorted(save)
|
357 |
+
|
358 |
+
|
359 |
+
if __name__ == '__main__':
|
360 |
+
parser = argparse.ArgumentParser()
|
361 |
+
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
362 |
+
parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
|
363 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
364 |
+
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
365 |
+
parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
|
366 |
+
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
|
367 |
+
opt = parser.parse_args()
|
368 |
+
opt.cfg = check_yaml(opt.cfg) # check YAML
|
369 |
+
print_args(vars(opt))
|
370 |
+
device = select_device(opt.device)
|
371 |
+
|
372 |
+
# Create model
|
373 |
+
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
|
374 |
+
model = Model(opt.cfg).to(device)
|
375 |
+
|
376 |
+
# Options
|
377 |
+
if opt.line_profile: # profile layer by layer
|
378 |
+
model(im, profile=True)
|
379 |
+
|
380 |
+
elif opt.profile: # profile forward-backward
|
381 |
+
results = profile(input=im, ops=[model], n=3)
|
382 |
+
|
383 |
+
elif opt.test: # test all models
|
384 |
+
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
385 |
+
try:
|
386 |
+
_ = Model(cfg)
|
387 |
+
except Exception as e:
|
388 |
+
print(f'Error in {cfg}: {e}')
|
389 |
+
|
390 |
+
else: # report fused model summary
|
391 |
+
model.fuse()
|
models/yolov5l.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/yolov5m.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.67 # model depth multiple
|
6 |
+
width_multiple: 0.75 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/yolov5n.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/yolov5s.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/yolov5x.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.33 # model depth multiple
|
6 |
+
width_multiple: 1.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
utils/__init__.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
utils/initialization
|
4 |
+
"""
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import platform
|
8 |
+
import threading
|
9 |
+
|
10 |
+
|
11 |
+
def emojis(str=''):
|
12 |
+
# Return platform-dependent emoji-safe version of string
|
13 |
+
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
14 |
+
|
15 |
+
|
16 |
+
class TryExcept(contextlib.ContextDecorator):
|
17 |
+
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
18 |
+
def __init__(self, msg=''):
|
19 |
+
self.msg = msg
|
20 |
+
|
21 |
+
def __enter__(self):
|
22 |
+
pass
|
23 |
+
|
24 |
+
def __exit__(self, exc_type, value, traceback):
|
25 |
+
if value:
|
26 |
+
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
|
27 |
+
return True
|
28 |
+
|
29 |
+
|
30 |
+
def threaded(func):
|
31 |
+
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
32 |
+
def wrapper(*args, **kwargs):
|
33 |
+
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
34 |
+
thread.start()
|
35 |
+
return thread
|
36 |
+
|
37 |
+
return wrapper
|
38 |
+
|
39 |
+
|
40 |
+
def join_threads(verbose=False):
|
41 |
+
# Join all daemon threads, i.e. atexit.register(lambda: join_threads())
|
42 |
+
main_thread = threading.current_thread()
|
43 |
+
for t in threading.enumerate():
|
44 |
+
if t is not main_thread:
|
45 |
+
if verbose:
|
46 |
+
print(f'Joining thread {t.name}')
|
47 |
+
t.join()
|
48 |
+
|
49 |
+
|
50 |
+
def notebook_init(verbose=True):
|
51 |
+
# Check system software and hardware
|
52 |
+
print('Checking setup...')
|
53 |
+
|
54 |
+
import os
|
55 |
+
import shutil
|
56 |
+
|
57 |
+
from utils.general import check_font, check_requirements, is_colab
|
58 |
+
from utils.torch_utils import select_device # imports
|
59 |
+
|
60 |
+
check_font()
|
61 |
+
|
62 |
+
import psutil
|
63 |
+
from IPython import display # to display images and clear console output
|
64 |
+
|
65 |
+
if is_colab():
|
66 |
+
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
67 |
+
|
68 |
+
# System info
|
69 |
+
if verbose:
|
70 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
71 |
+
ram = psutil.virtual_memory().total
|
72 |
+
total, used, free = shutil.disk_usage("/")
|
73 |
+
display.clear_output()
|
74 |
+
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
75 |
+
else:
|
76 |
+
s = ''
|
77 |
+
|
78 |
+
select_device(newline=False)
|
79 |
+
print(emojis(f'Setup complete ✅ {s}'))
|
80 |
+
return display
|
utils/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (2.51 kB). View file
|
|
utils/__pycache__/augmentations.cpython-38.pyc
ADDED
Binary file (13.7 kB). View file
|
|
utils/__pycache__/autoanchor.cpython-38.pyc
ADDED
Binary file (6.45 kB). View file
|
|
utils/__pycache__/dataloaders.cpython-38.pyc
ADDED
Binary file (12.7 kB). View file
|
|
utils/__pycache__/general.cpython-38.pyc
ADDED
Binary file (36.7 kB). View file
|
|
utils/__pycache__/metrics.cpython-38.pyc
ADDED
Binary file (11.3 kB). View file
|
|
utils/__pycache__/plots.cpython-38.pyc
ADDED
Binary file (20.2 kB). View file
|
|
utils/__pycache__/torch_utils.cpython-38.pyc
ADDED
Binary file (16.8 kB). View file
|
|
utils/activations.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Activation functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class SiLU(nn.Module):
|
12 |
+
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
|
13 |
+
@staticmethod
|
14 |
+
def forward(x):
|
15 |
+
return x * torch.sigmoid(x)
|
16 |
+
|
17 |
+
|
18 |
+
class Hardswish(nn.Module):
|
19 |
+
# Hard-SiLU activation
|
20 |
+
@staticmethod
|
21 |
+
def forward(x):
|
22 |
+
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
23 |
+
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
24 |
+
|
25 |
+
|
26 |
+
class Mish(nn.Module):
|
27 |
+
# Mish activation https://github.com/digantamisra98/Mish
|
28 |
+
@staticmethod
|
29 |
+
def forward(x):
|
30 |
+
return x * F.softplus(x).tanh()
|
31 |
+
|
32 |
+
|
33 |
+
class MemoryEfficientMish(nn.Module):
|
34 |
+
# Mish activation memory-efficient
|
35 |
+
class F(torch.autograd.Function):
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def forward(ctx, x):
|
39 |
+
ctx.save_for_backward(x)
|
40 |
+
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
41 |
+
|
42 |
+
@staticmethod
|
43 |
+
def backward(ctx, grad_output):
|
44 |
+
x = ctx.saved_tensors[0]
|
45 |
+
sx = torch.sigmoid(x)
|
46 |
+
fx = F.softplus(x).tanh()
|
47 |
+
return grad_output * (fx + x * sx * (1 - fx * fx))
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return self.F.apply(x)
|
51 |
+
|
52 |
+
|
53 |
+
class FReLU(nn.Module):
|
54 |
+
# FReLU activation https://arxiv.org/abs/2007.11824
|
55 |
+
def __init__(self, c1, k=3): # ch_in, kernel
|
56 |
+
super().__init__()
|
57 |
+
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
58 |
+
self.bn = nn.BatchNorm2d(c1)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
return torch.max(x, self.bn(self.conv(x)))
|
62 |
+
|
63 |
+
|
64 |
+
class AconC(nn.Module):
|
65 |
+
r""" ACON activation (activate or not)
|
66 |
+
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
67 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, c1):
|
71 |
+
super().__init__()
|
72 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
73 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
74 |
+
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
dpx = (self.p1 - self.p2) * x
|
78 |
+
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
79 |
+
|
80 |
+
|
81 |
+
class MetaAconC(nn.Module):
|
82 |
+
r""" ACON activation (activate or not)
|
83 |
+
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
84 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
88 |
+
super().__init__()
|
89 |
+
c2 = max(r, c1 // r)
|
90 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
91 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
92 |
+
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
93 |
+
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
94 |
+
# self.bn1 = nn.BatchNorm2d(c2)
|
95 |
+
# self.bn2 = nn.BatchNorm2d(c1)
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
99 |
+
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
100 |
+
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
101 |
+
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
102 |
+
dpx = (self.p1 - self.p2) * x
|
103 |
+
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|
utils/augmentations.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Image augmentation functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import random
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torchvision.transforms as T
|
13 |
+
import torchvision.transforms.functional as TF
|
14 |
+
|
15 |
+
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
|
16 |
+
from utils.metrics import bbox_ioa
|
17 |
+
|
18 |
+
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
19 |
+
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
20 |
+
|
21 |
+
|
22 |
+
class Albumentations:
|
23 |
+
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
24 |
+
def __init__(self, size=640):
|
25 |
+
self.transform = None
|
26 |
+
prefix = colorstr('albumentations: ')
|
27 |
+
try:
|
28 |
+
import albumentations as A
|
29 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
30 |
+
|
31 |
+
T = [
|
32 |
+
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
|
33 |
+
A.Blur(p=0.01),
|
34 |
+
A.MedianBlur(p=0.01),
|
35 |
+
A.ToGray(p=0.01),
|
36 |
+
A.CLAHE(p=0.01),
|
37 |
+
A.RandomBrightnessContrast(p=0.0),
|
38 |
+
A.RandomGamma(p=0.0),
|
39 |
+
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
40 |
+
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
41 |
+
|
42 |
+
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
43 |
+
except ImportError: # package not installed, skip
|
44 |
+
pass
|
45 |
+
except Exception as e:
|
46 |
+
LOGGER.info(f'{prefix}{e}')
|
47 |
+
|
48 |
+
def __call__(self, im, labels, p=1.0):
|
49 |
+
if self.transform and random.random() < p:
|
50 |
+
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
51 |
+
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
52 |
+
return im, labels
|
53 |
+
|
54 |
+
|
55 |
+
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
56 |
+
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
|
57 |
+
return TF.normalize(x, mean, std, inplace=inplace)
|
58 |
+
|
59 |
+
|
60 |
+
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
61 |
+
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
|
62 |
+
for i in range(3):
|
63 |
+
x[:, i] = x[:, i] * std[i] + mean[i]
|
64 |
+
return x
|
65 |
+
|
66 |
+
|
67 |
+
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
68 |
+
# HSV color-space augmentation
|
69 |
+
if hgain or sgain or vgain:
|
70 |
+
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
71 |
+
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
72 |
+
dtype = im.dtype # uint8
|
73 |
+
|
74 |
+
x = np.arange(0, 256, dtype=r.dtype)
|
75 |
+
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
76 |
+
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
77 |
+
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
78 |
+
|
79 |
+
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
80 |
+
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
81 |
+
|
82 |
+
|
83 |
+
def hist_equalize(im, clahe=True, bgr=False):
|
84 |
+
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
85 |
+
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
86 |
+
if clahe:
|
87 |
+
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
88 |
+
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
89 |
+
else:
|
90 |
+
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
91 |
+
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
92 |
+
|
93 |
+
|
94 |
+
def replicate(im, labels):
|
95 |
+
# Replicate labels
|
96 |
+
h, w = im.shape[:2]
|
97 |
+
boxes = labels[:, 1:].astype(int)
|
98 |
+
x1, y1, x2, y2 = boxes.T
|
99 |
+
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
100 |
+
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
101 |
+
x1b, y1b, x2b, y2b = boxes[i]
|
102 |
+
bh, bw = y2b - y1b, x2b - x1b
|
103 |
+
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
104 |
+
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
105 |
+
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
106 |
+
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
107 |
+
|
108 |
+
return im, labels
|
109 |
+
|
110 |
+
|
111 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
112 |
+
# Resize and pad image while meeting stride-multiple constraints
|
113 |
+
shape = im.shape[:2] # current shape [height, width]
|
114 |
+
if isinstance(new_shape, int):
|
115 |
+
new_shape = (new_shape, new_shape)
|
116 |
+
|
117 |
+
# Scale ratio (new / old)
|
118 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
119 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
120 |
+
r = min(r, 1.0)
|
121 |
+
|
122 |
+
# Compute padding
|
123 |
+
ratio = r, r # width, height ratios
|
124 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
125 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
126 |
+
if auto: # minimum rectangle
|
127 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
128 |
+
elif scaleFill: # stretch
|
129 |
+
dw, dh = 0.0, 0.0
|
130 |
+
new_unpad = (new_shape[1], new_shape[0])
|
131 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
132 |
+
|
133 |
+
dw /= 2 # divide padding into 2 sides
|
134 |
+
dh /= 2
|
135 |
+
|
136 |
+
if shape[::-1] != new_unpad: # resize
|
137 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
138 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
139 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
140 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
141 |
+
return im, ratio, (dw, dh)
|
142 |
+
|
143 |
+
|
144 |
+
def random_perspective(im,
|
145 |
+
targets=(),
|
146 |
+
segments=(),
|
147 |
+
degrees=10,
|
148 |
+
translate=.1,
|
149 |
+
scale=.1,
|
150 |
+
shear=10,
|
151 |
+
perspective=0.0,
|
152 |
+
border=(0, 0)):
|
153 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
154 |
+
# targets = [cls, xyxy]
|
155 |
+
|
156 |
+
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
157 |
+
width = im.shape[1] + border[1] * 2
|
158 |
+
|
159 |
+
# Center
|
160 |
+
C = np.eye(3)
|
161 |
+
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
162 |
+
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
163 |
+
|
164 |
+
# Perspective
|
165 |
+
P = np.eye(3)
|
166 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
167 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
168 |
+
|
169 |
+
# Rotation and Scale
|
170 |
+
R = np.eye(3)
|
171 |
+
a = random.uniform(-degrees, degrees)
|
172 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
173 |
+
s = random.uniform(1 - scale, 1 + scale)
|
174 |
+
# s = 2 ** random.uniform(-scale, scale)
|
175 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
176 |
+
|
177 |
+
# Shear
|
178 |
+
S = np.eye(3)
|
179 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
180 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
181 |
+
|
182 |
+
# Translation
|
183 |
+
T = np.eye(3)
|
184 |
+
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
185 |
+
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
186 |
+
|
187 |
+
# Combined rotation matrix
|
188 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
189 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
190 |
+
if perspective:
|
191 |
+
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
192 |
+
else: # affine
|
193 |
+
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
194 |
+
|
195 |
+
# Visualize
|
196 |
+
# import matplotlib.pyplot as plt
|
197 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
198 |
+
# ax[0].imshow(im[:, :, ::-1]) # base
|
199 |
+
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
200 |
+
|
201 |
+
# Transform label coordinates
|
202 |
+
n = len(targets)
|
203 |
+
if n:
|
204 |
+
use_segments = any(x.any() for x in segments)
|
205 |
+
new = np.zeros((n, 4))
|
206 |
+
if use_segments: # warp segments
|
207 |
+
segments = resample_segments(segments) # upsample
|
208 |
+
for i, segment in enumerate(segments):
|
209 |
+
xy = np.ones((len(segment), 3))
|
210 |
+
xy[:, :2] = segment
|
211 |
+
xy = xy @ M.T # transform
|
212 |
+
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
213 |
+
|
214 |
+
# clip
|
215 |
+
new[i] = segment2box(xy, width, height)
|
216 |
+
|
217 |
+
else: # warp boxes
|
218 |
+
xy = np.ones((n * 4, 3))
|
219 |
+
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
220 |
+
xy = xy @ M.T # transform
|
221 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
222 |
+
|
223 |
+
# create new boxes
|
224 |
+
x = xy[:, [0, 2, 4, 6]]
|
225 |
+
y = xy[:, [1, 3, 5, 7]]
|
226 |
+
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
227 |
+
|
228 |
+
# clip
|
229 |
+
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
230 |
+
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
231 |
+
|
232 |
+
# filter candidates
|
233 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
234 |
+
targets = targets[i]
|
235 |
+
targets[:, 1:5] = new[i]
|
236 |
+
|
237 |
+
return im, targets
|
238 |
+
|
239 |
+
|
240 |
+
def copy_paste(im, labels, segments, p=0.5):
|
241 |
+
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
242 |
+
n = len(segments)
|
243 |
+
if p and n:
|
244 |
+
h, w, c = im.shape # height, width, channels
|
245 |
+
im_new = np.zeros(im.shape, np.uint8)
|
246 |
+
for j in random.sample(range(n), k=round(p * n)):
|
247 |
+
l, s = labels[j], segments[j]
|
248 |
+
box = w - l[3], l[2], w - l[1], l[4]
|
249 |
+
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
250 |
+
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
251 |
+
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
252 |
+
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
253 |
+
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
254 |
+
|
255 |
+
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
256 |
+
i = cv2.flip(im_new, 1).astype(bool)
|
257 |
+
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
258 |
+
|
259 |
+
return im, labels, segments
|
260 |
+
|
261 |
+
|
262 |
+
def cutout(im, labels, p=0.5):
|
263 |
+
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
264 |
+
if random.random() < p:
|
265 |
+
h, w = im.shape[:2]
|
266 |
+
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
267 |
+
for s in scales:
|
268 |
+
mask_h = random.randint(1, int(h * s)) # create random masks
|
269 |
+
mask_w = random.randint(1, int(w * s))
|
270 |
+
|
271 |
+
# box
|
272 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
273 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
274 |
+
xmax = min(w, xmin + mask_w)
|
275 |
+
ymax = min(h, ymin + mask_h)
|
276 |
+
|
277 |
+
# apply random color mask
|
278 |
+
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
279 |
+
|
280 |
+
# return unobscured labels
|
281 |
+
if len(labels) and s > 0.03:
|
282 |
+
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
283 |
+
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h)) # intersection over area
|
284 |
+
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
285 |
+
|
286 |
+
return labels
|
287 |
+
|
288 |
+
|
289 |
+
def mixup(im, labels, im2, labels2):
|
290 |
+
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
291 |
+
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
292 |
+
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
293 |
+
labels = np.concatenate((labels, labels2), 0)
|
294 |
+
return im, labels
|
295 |
+
|
296 |
+
|
297 |
+
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
298 |
+
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
299 |
+
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
300 |
+
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
301 |
+
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
302 |
+
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
303 |
+
|
304 |
+
|
305 |
+
def classify_albumentations(
|
306 |
+
augment=True,
|
307 |
+
size=224,
|
308 |
+
scale=(0.08, 1.0),
|
309 |
+
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
|
310 |
+
hflip=0.5,
|
311 |
+
vflip=0.0,
|
312 |
+
jitter=0.4,
|
313 |
+
mean=IMAGENET_MEAN,
|
314 |
+
std=IMAGENET_STD,
|
315 |
+
auto_aug=False):
|
316 |
+
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
317 |
+
prefix = colorstr('albumentations: ')
|
318 |
+
try:
|
319 |
+
import albumentations as A
|
320 |
+
from albumentations.pytorch import ToTensorV2
|
321 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
322 |
+
if augment: # Resize and crop
|
323 |
+
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
|
324 |
+
if auto_aug:
|
325 |
+
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
326 |
+
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
|
327 |
+
else:
|
328 |
+
if hflip > 0:
|
329 |
+
T += [A.HorizontalFlip(p=hflip)]
|
330 |
+
if vflip > 0:
|
331 |
+
T += [A.VerticalFlip(p=vflip)]
|
332 |
+
if jitter > 0:
|
333 |
+
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue
|
334 |
+
T += [A.ColorJitter(*color_jitter, 0)]
|
335 |
+
else: # Use fixed crop for eval set (reproducibility)
|
336 |
+
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
337 |
+
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
338 |
+
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
339 |
+
return A.Compose(T)
|
340 |
+
|
341 |
+
except ImportError: # package not installed, skip
|
342 |
+
LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)')
|
343 |
+
except Exception as e:
|
344 |
+
LOGGER.info(f'{prefix}{e}')
|
345 |
+
|
346 |
+
|
347 |
+
def classify_transforms(size=224):
|
348 |
+
# Transforms to apply if albumentations not installed
|
349 |
+
assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
|
350 |
+
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
351 |
+
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
352 |
+
|
353 |
+
|
354 |
+
class LetterBox:
|
355 |
+
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
356 |
+
def __init__(self, size=(640, 640), auto=False, stride=32):
|
357 |
+
super().__init__()
|
358 |
+
self.h, self.w = (size, size) if isinstance(size, int) else size
|
359 |
+
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
360 |
+
self.stride = stride # used with auto
|
361 |
+
|
362 |
+
def __call__(self, im): # im = np.array HWC
|
363 |
+
imh, imw = im.shape[:2]
|
364 |
+
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
365 |
+
h, w = round(imh * r), round(imw * r) # resized image
|
366 |
+
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
367 |
+
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
368 |
+
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
369 |
+
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
370 |
+
return im_out
|
371 |
+
|
372 |
+
|
373 |
+
class CenterCrop:
|
374 |
+
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
|
375 |
+
def __init__(self, size=640):
|
376 |
+
super().__init__()
|
377 |
+
self.h, self.w = (size, size) if isinstance(size, int) else size
|
378 |
+
|
379 |
+
def __call__(self, im): # im = np.array HWC
|
380 |
+
imh, imw = im.shape[:2]
|
381 |
+
m = min(imh, imw) # min dimension
|
382 |
+
top, left = (imh - m) // 2, (imw - m) // 2
|
383 |
+
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
384 |
+
|
385 |
+
|
386 |
+
class ToTensor:
|
387 |
+
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
388 |
+
def __init__(self, half=False):
|
389 |
+
super().__init__()
|
390 |
+
self.half = half
|
391 |
+
|
392 |
+
def __call__(self, im): # im = np.array HWC in BGR order
|
393 |
+
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
394 |
+
im = torch.from_numpy(im) # to torch
|
395 |
+
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
396 |
+
im /= 255.0 # 0-255 to 0.0-1.0
|
397 |
+
return im
|
utils/autoanchor.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
AutoAnchor utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import random
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import yaml
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from utils import TryExcept
|
14 |
+
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
|
15 |
+
|
16 |
+
PREFIX = colorstr('AutoAnchor: ')
|
17 |
+
|
18 |
+
|
19 |
+
def check_anchor_order(m):
|
20 |
+
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
21 |
+
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
22 |
+
da = a[-1] - a[0] # delta a
|
23 |
+
ds = m.stride[-1] - m.stride[0] # delta s
|
24 |
+
if da and (da.sign() != ds.sign()): # same order
|
25 |
+
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
26 |
+
m.anchors[:] = m.anchors.flip(0)
|
27 |
+
|
28 |
+
|
29 |
+
@TryExcept(f'{PREFIX}ERROR')
|
30 |
+
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
31 |
+
# Check anchor fit to data, recompute if necessary
|
32 |
+
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
33 |
+
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
34 |
+
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
35 |
+
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
36 |
+
|
37 |
+
def metric(k): # compute metric
|
38 |
+
r = wh[:, None] / k[None]
|
39 |
+
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
40 |
+
best = x.max(1)[0] # best_x
|
41 |
+
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
42 |
+
bpr = (best > 1 / thr).float().mean() # best possible recall
|
43 |
+
return bpr, aat
|
44 |
+
|
45 |
+
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
46 |
+
anchors = m.anchors.clone() * stride # current anchors
|
47 |
+
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
48 |
+
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
49 |
+
if bpr > 0.98: # threshold to recompute
|
50 |
+
LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
|
51 |
+
else:
|
52 |
+
LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
|
53 |
+
na = m.anchors.numel() // 2 # number of anchors
|
54 |
+
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
55 |
+
new_bpr = metric(anchors)[0]
|
56 |
+
if new_bpr > bpr: # replace anchors
|
57 |
+
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
58 |
+
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
59 |
+
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
60 |
+
m.anchors /= stride
|
61 |
+
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
62 |
+
else:
|
63 |
+
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
64 |
+
LOGGER.info(s)
|
65 |
+
|
66 |
+
|
67 |
+
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
68 |
+
""" Creates kmeans-evolved anchors from training dataset
|
69 |
+
|
70 |
+
Arguments:
|
71 |
+
dataset: path to data.yaml, or a loaded dataset
|
72 |
+
n: number of anchors
|
73 |
+
img_size: image size used for training
|
74 |
+
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
75 |
+
gen: generations to evolve anchors using genetic algorithm
|
76 |
+
verbose: print all results
|
77 |
+
|
78 |
+
Return:
|
79 |
+
k: kmeans evolved anchors
|
80 |
+
|
81 |
+
Usage:
|
82 |
+
from utils.autoanchor import *; _ = kmean_anchors()
|
83 |
+
"""
|
84 |
+
from scipy.cluster.vq import kmeans
|
85 |
+
|
86 |
+
npr = np.random
|
87 |
+
thr = 1 / thr
|
88 |
+
|
89 |
+
def metric(k, wh): # compute metrics
|
90 |
+
r = wh[:, None] / k[None]
|
91 |
+
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
92 |
+
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
93 |
+
return x, x.max(1)[0] # x, best_x
|
94 |
+
|
95 |
+
def anchor_fitness(k): # mutation fitness
|
96 |
+
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
97 |
+
return (best * (best > thr).float()).mean() # fitness
|
98 |
+
|
99 |
+
def print_results(k, verbose=True):
|
100 |
+
k = k[np.argsort(k.prod(1))] # sort small to large
|
101 |
+
x, best = metric(k, wh0)
|
102 |
+
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
103 |
+
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
104 |
+
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
105 |
+
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
106 |
+
for x in k:
|
107 |
+
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
108 |
+
if verbose:
|
109 |
+
LOGGER.info(s[:-2])
|
110 |
+
return k
|
111 |
+
|
112 |
+
if isinstance(dataset, str): # *.yaml file
|
113 |
+
with open(dataset, errors='ignore') as f:
|
114 |
+
data_dict = yaml.safe_load(f) # model dict
|
115 |
+
from utils.dataloaders import LoadImagesAndLabels
|
116 |
+
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
117 |
+
|
118 |
+
# Get label wh
|
119 |
+
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
120 |
+
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
121 |
+
|
122 |
+
# Filter
|
123 |
+
i = (wh0 < 3.0).any(1).sum()
|
124 |
+
if i:
|
125 |
+
LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
|
126 |
+
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
|
127 |
+
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
128 |
+
|
129 |
+
# Kmeans init
|
130 |
+
try:
|
131 |
+
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
132 |
+
assert n <= len(wh) # apply overdetermined constraint
|
133 |
+
s = wh.std(0) # sigmas for whitening
|
134 |
+
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
135 |
+
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
136 |
+
except Exception:
|
137 |
+
LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
|
138 |
+
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
139 |
+
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
140 |
+
k = print_results(k, verbose=False)
|
141 |
+
|
142 |
+
# Plot
|
143 |
+
# k, d = [None] * 20, [None] * 20
|
144 |
+
# for i in tqdm(range(1, 21)):
|
145 |
+
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
146 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
147 |
+
# ax = ax.ravel()
|
148 |
+
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
149 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
150 |
+
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
151 |
+
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
152 |
+
# fig.savefig('wh.png', dpi=200)
|
153 |
+
|
154 |
+
# Evolve
|
155 |
+
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
156 |
+
pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
|
157 |
+
for _ in pbar:
|
158 |
+
v = np.ones(sh)
|
159 |
+
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
160 |
+
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
161 |
+
kg = (k.copy() * v).clip(min=2.0)
|
162 |
+
fg = anchor_fitness(kg)
|
163 |
+
if fg > f:
|
164 |
+
f, k = fg, kg.copy()
|
165 |
+
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
166 |
+
if verbose:
|
167 |
+
print_results(k, verbose)
|
168 |
+
|
169 |
+
return print_results(k).astype(np.float32)
|
utils/autobatch.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Auto-batch utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
from copy import deepcopy
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from utils.general import LOGGER, colorstr
|
12 |
+
from utils.torch_utils import profile
|
13 |
+
|
14 |
+
|
15 |
+
def check_train_batch_size(model, imgsz=640, amp=True):
|
16 |
+
# Check YOLOv5 training batch size
|
17 |
+
with torch.cuda.amp.autocast(amp):
|
18 |
+
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
19 |
+
|
20 |
+
|
21 |
+
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
|
22 |
+
# Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
|
23 |
+
# Usage:
|
24 |
+
# import torch
|
25 |
+
# from utils.autobatch import autobatch
|
26 |
+
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
27 |
+
# print(autobatch(model))
|
28 |
+
|
29 |
+
# Check device
|
30 |
+
prefix = colorstr('AutoBatch: ')
|
31 |
+
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
32 |
+
device = next(model.parameters()).device # get model device
|
33 |
+
if device.type == 'cpu':
|
34 |
+
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
35 |
+
return batch_size
|
36 |
+
if torch.backends.cudnn.benchmark:
|
37 |
+
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
|
38 |
+
return batch_size
|
39 |
+
|
40 |
+
# Inspect CUDA memory
|
41 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
42 |
+
d = str(device).upper() # 'CUDA:0'
|
43 |
+
properties = torch.cuda.get_device_properties(device) # device properties
|
44 |
+
t = properties.total_memory / gb # GiB total
|
45 |
+
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
46 |
+
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
47 |
+
f = t - (r + a) # GiB free
|
48 |
+
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
49 |
+
|
50 |
+
# Profile batch sizes
|
51 |
+
batch_sizes = [1, 2, 4, 8, 16]
|
52 |
+
try:
|
53 |
+
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
54 |
+
results = profile(img, model, n=3, device=device)
|
55 |
+
except Exception as e:
|
56 |
+
LOGGER.warning(f'{prefix}{e}')
|
57 |
+
|
58 |
+
# Fit a solution
|
59 |
+
y = [x[2] for x in results if x] # memory [2]
|
60 |
+
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
61 |
+
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
62 |
+
if None in results: # some sizes failed
|
63 |
+
i = results.index(None) # first fail index
|
64 |
+
if b >= batch_sizes[i]: # y intercept above failure point
|
65 |
+
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
66 |
+
if b < 1 or b > 1024: # b outside of safe range
|
67 |
+
b = batch_size
|
68 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
|
69 |
+
|
70 |
+
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
|
71 |
+
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
|
72 |
+
return b
|
utils/callbacks.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Callback utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import threading
|
7 |
+
|
8 |
+
|
9 |
+
class Callbacks:
|
10 |
+
""""
|
11 |
+
Handles all registered callbacks for YOLOv5 Hooks
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self):
|
15 |
+
# Define the available callbacks
|
16 |
+
self._callbacks = {
|
17 |
+
'on_pretrain_routine_start': [],
|
18 |
+
'on_pretrain_routine_end': [],
|
19 |
+
'on_train_start': [],
|
20 |
+
'on_train_epoch_start': [],
|
21 |
+
'on_train_batch_start': [],
|
22 |
+
'optimizer_step': [],
|
23 |
+
'on_before_zero_grad': [],
|
24 |
+
'on_train_batch_end': [],
|
25 |
+
'on_train_epoch_end': [],
|
26 |
+
'on_val_start': [],
|
27 |
+
'on_val_batch_start': [],
|
28 |
+
'on_val_image_end': [],
|
29 |
+
'on_val_batch_end': [],
|
30 |
+
'on_val_end': [],
|
31 |
+
'on_fit_epoch_end': [], # fit = train + val
|
32 |
+
'on_model_save': [],
|
33 |
+
'on_train_end': [],
|
34 |
+
'on_params_update': [],
|
35 |
+
'teardown': [],}
|
36 |
+
self.stop_training = False # set True to interrupt training
|
37 |
+
|
38 |
+
def register_action(self, hook, name='', callback=None):
|
39 |
+
"""
|
40 |
+
Register a new action to a callback hook
|
41 |
+
|
42 |
+
Args:
|
43 |
+
hook: The callback hook name to register the action to
|
44 |
+
name: The name of the action for later reference
|
45 |
+
callback: The callback to fire
|
46 |
+
"""
|
47 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
48 |
+
assert callable(callback), f"callback '{callback}' is not callable"
|
49 |
+
self._callbacks[hook].append({'name': name, 'callback': callback})
|
50 |
+
|
51 |
+
def get_registered_actions(self, hook=None):
|
52 |
+
""""
|
53 |
+
Returns all the registered actions by callback hook
|
54 |
+
|
55 |
+
Args:
|
56 |
+
hook: The name of the hook to check, defaults to all
|
57 |
+
"""
|
58 |
+
return self._callbacks[hook] if hook else self._callbacks
|
59 |
+
|
60 |
+
def run(self, hook, *args, thread=False, **kwargs):
|
61 |
+
"""
|
62 |
+
Loop through the registered actions and fire all callbacks on main thread
|
63 |
+
|
64 |
+
Args:
|
65 |
+
hook: The name of the hook to check, defaults to all
|
66 |
+
args: Arguments to receive from YOLOv5
|
67 |
+
thread: (boolean) Run callbacks in daemon thread
|
68 |
+
kwargs: Keyword Arguments to receive from YOLOv5
|
69 |
+
"""
|
70 |
+
|
71 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
72 |
+
for logger in self._callbacks[hook]:
|
73 |
+
if thread:
|
74 |
+
threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start()
|
75 |
+
else:
|
76 |
+
logger['callback'](*args, **kwargs)
|
utils/dataloaders.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Dataloaders and dataset utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import glob
|
8 |
+
import hashlib
|
9 |
+
import json
|
10 |
+
import math
|
11 |
+
import os
|
12 |
+
import random
|
13 |
+
import shutil
|
14 |
+
import time
|
15 |
+
from itertools import repeat
|
16 |
+
from multiprocessing.pool import Pool, ThreadPool
|
17 |
+
from pathlib import Path
|
18 |
+
from threading import Thread
|
19 |
+
from urllib.parse import urlparse
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import psutil
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torchvision
|
26 |
+
import yaml
|
27 |
+
from PIL import ExifTags, Image, ImageOps
|
28 |
+
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
|
32 |
+
letterbox, mixup, random_perspective)
|
33 |
+
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
|
34 |
+
check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
|
35 |
+
xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
|
36 |
+
from utils.torch_utils import torch_distributed_zero_first
|
37 |
+
|
38 |
+
# Parameters
|
39 |
+
HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
40 |
+
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes
|
41 |
+
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
42 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
43 |
+
RANK = int(os.getenv('RANK', -1))
|
44 |
+
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
|
45 |
+
|
46 |
+
# Get orientation exif tag
|
47 |
+
for orientation in ExifTags.TAGS.keys():
|
48 |
+
if ExifTags.TAGS[orientation] == 'Orientation':
|
49 |
+
break
|
50 |
+
|
51 |
+
|
52 |
+
def get_hash(paths):
|
53 |
+
# Returns a single hash value of a list of paths (files or dirs)
|
54 |
+
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
55 |
+
h = hashlib.md5(str(size).encode()) # hash sizes
|
56 |
+
h.update(''.join(paths).encode()) # hash paths
|
57 |
+
return h.hexdigest() # return hash
|
58 |
+
|
59 |
+
|
60 |
+
def exif_size(img):
|
61 |
+
# Returns exif-corrected PIL size
|
62 |
+
s = img.size # (width, height)
|
63 |
+
with contextlib.suppress(Exception):
|
64 |
+
rotation = dict(img._getexif().items())[orientation]
|
65 |
+
if rotation in [6, 8]: # rotation 270 or 90
|
66 |
+
s = (s[1], s[0])
|
67 |
+
return s
|
68 |
+
|
69 |
+
|
70 |
+
def exif_transpose(image):
|
71 |
+
"""
|
72 |
+
Transpose a PIL image accordingly if it has an EXIF Orientation tag.
|
73 |
+
Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
|
74 |
+
|
75 |
+
:param image: The image to transpose.
|
76 |
+
:return: An image.
|
77 |
+
"""
|
78 |
+
exif = image.getexif()
|
79 |
+
orientation = exif.get(0x0112, 1) # default 1
|
80 |
+
if orientation > 1:
|
81 |
+
method = {
|
82 |
+
2: Image.FLIP_LEFT_RIGHT,
|
83 |
+
3: Image.ROTATE_180,
|
84 |
+
4: Image.FLIP_TOP_BOTTOM,
|
85 |
+
5: Image.TRANSPOSE,
|
86 |
+
6: Image.ROTATE_270,
|
87 |
+
7: Image.TRANSVERSE,
|
88 |
+
8: Image.ROTATE_90}.get(orientation)
|
89 |
+
if method is not None:
|
90 |
+
image = image.transpose(method)
|
91 |
+
del exif[0x0112]
|
92 |
+
image.info["exif"] = exif.tobytes()
|
93 |
+
return image
|
94 |
+
|
95 |
+
|
96 |
+
def seed_worker(worker_id):
|
97 |
+
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
|
98 |
+
worker_seed = torch.initial_seed() % 2 ** 32
|
99 |
+
np.random.seed(worker_seed)
|
100 |
+
random.seed(worker_seed)
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
class LoadImages:
|
105 |
+
# YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
|
106 |
+
def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
107 |
+
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
|
108 |
+
path = Path(path).read_text().rsplit()
|
109 |
+
files = []
|
110 |
+
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
|
111 |
+
p = str(Path(p).resolve())
|
112 |
+
if '*' in p:
|
113 |
+
files.extend(sorted(glob.glob(p, recursive=True))) # glob
|
114 |
+
elif os.path.isdir(p):
|
115 |
+
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
|
116 |
+
elif os.path.isfile(p):
|
117 |
+
files.append(p) # files
|
118 |
+
else:
|
119 |
+
raise FileNotFoundError(f'{p} does not exist')
|
120 |
+
|
121 |
+
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
|
122 |
+
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
|
123 |
+
ni, nv = len(images), len(videos)
|
124 |
+
|
125 |
+
self.img_size = img_size
|
126 |
+
self.stride = stride
|
127 |
+
self.files = images + videos
|
128 |
+
self.nf = ni + nv # number of files
|
129 |
+
self.video_flag = [False] * ni + [True] * nv
|
130 |
+
self.mode = 'image'
|
131 |
+
self.auto = auto
|
132 |
+
self.transforms = transforms # optional
|
133 |
+
self.vid_stride = vid_stride # video frame-rate stride
|
134 |
+
if any(videos):
|
135 |
+
self._new_video(videos[0]) # new video
|
136 |
+
else:
|
137 |
+
self.cap = None
|
138 |
+
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
139 |
+
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
|
140 |
+
|
141 |
+
def __iter__(self):
|
142 |
+
self.count = 0
|
143 |
+
return self
|
144 |
+
|
145 |
+
def __next__(self):
|
146 |
+
if self.count == self.nf:
|
147 |
+
raise StopIteration
|
148 |
+
path = self.files[self.count]
|
149 |
+
|
150 |
+
if self.video_flag[self.count]:
|
151 |
+
# Read video
|
152 |
+
self.mode = 'video'
|
153 |
+
for _ in range(self.vid_stride):
|
154 |
+
self.cap.grab()
|
155 |
+
ret_val, im0 = self.cap.retrieve()
|
156 |
+
while not ret_val:
|
157 |
+
self.count += 1
|
158 |
+
self.cap.release()
|
159 |
+
if self.count == self.nf: # last video
|
160 |
+
raise StopIteration
|
161 |
+
path = self.files[self.count]
|
162 |
+
self._new_video(path)
|
163 |
+
ret_val, im0 = self.cap.read()
|
164 |
+
|
165 |
+
self.frame += 1
|
166 |
+
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
|
167 |
+
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
|
168 |
+
|
169 |
+
else:
|
170 |
+
# Read image
|
171 |
+
self.count += 1
|
172 |
+
im0 = cv2.imread(path) # BGR
|
173 |
+
assert im0 is not None, f'Image Not Found {path}'
|
174 |
+
s = f'image {self.count}/{self.nf} {path}: '
|
175 |
+
|
176 |
+
if self.transforms:
|
177 |
+
im = self.transforms(im0) # transforms
|
178 |
+
else:
|
179 |
+
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
180 |
+
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
181 |
+
im = np.ascontiguousarray(im) # contiguous
|
182 |
+
|
183 |
+
return path, im, im0, self.cap, s
|
184 |
+
|
185 |
+
def _new_video(self, path):
|
186 |
+
# Create a new video capture object
|
187 |
+
self.frame = 0
|
188 |
+
self.cap = cv2.VideoCapture(path)
|
189 |
+
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
|
190 |
+
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
|
191 |
+
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493
|
192 |
+
|
193 |
+
def _cv2_rotate(self, im):
|
194 |
+
# Rotate a cv2 video manually
|
195 |
+
if self.orientation == 0:
|
196 |
+
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
|
197 |
+
elif self.orientation == 180:
|
198 |
+
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
199 |
+
elif self.orientation == 90:
|
200 |
+
return cv2.rotate(im, cv2.ROTATE_180)
|
201 |
+
return im
|
202 |
+
|
203 |
+
def __len__(self):
|
204 |
+
return self.nf # number of files
|
205 |
+
|
206 |
+
def img2label_paths(img_paths):
|
207 |
+
# Define label paths as a function of image paths
|
208 |
+
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
|
209 |
+
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
210 |
+
|
211 |
+
# Ancillary functions --------------------------------------------------------------------------------------------------
|
212 |
+
def flatten_recursive(path=DATASETS_DIR / 'coco128'):
|
213 |
+
# Flatten a recursive directory by bringing all files to top level
|
214 |
+
new_path = Path(f'{str(path)}_flat')
|
215 |
+
if os.path.exists(new_path):
|
216 |
+
shutil.rmtree(new_path) # delete output folder
|
217 |
+
os.makedirs(new_path) # make new output folder
|
218 |
+
for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
|
219 |
+
shutil.copyfile(file, new_path / Path(file).name)
|
220 |
+
|
221 |
+
|
222 |
+
def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes()
|
223 |
+
# Convert detection dataset into classification dataset, with one directory per class
|
224 |
+
path = Path(path) # images dir
|
225 |
+
shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing
|
226 |
+
files = list(path.rglob('*.*'))
|
227 |
+
n = len(files) # number of files
|
228 |
+
for im_file in tqdm(files, total=n):
|
229 |
+
if im_file.suffix[1:] in IMG_FORMATS:
|
230 |
+
# image
|
231 |
+
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
232 |
+
h, w = im.shape[:2]
|
233 |
+
|
234 |
+
# labels
|
235 |
+
lb_file = Path(img2label_paths([str(im_file)])[0])
|
236 |
+
if Path(lb_file).exists():
|
237 |
+
with open(lb_file) as f:
|
238 |
+
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
239 |
+
|
240 |
+
for j, x in enumerate(lb):
|
241 |
+
c = int(x[0]) # class
|
242 |
+
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
243 |
+
if not f.parent.is_dir():
|
244 |
+
f.parent.mkdir(parents=True)
|
245 |
+
|
246 |
+
b = x[1:] * [w, h, w, h] # box
|
247 |
+
# b[2:] = b[2:].max() # rectangle to square
|
248 |
+
b[2:] = b[2:] * 1.2 + 3 # pad
|
249 |
+
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
|
250 |
+
|
251 |
+
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
252 |
+
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
253 |
+
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
254 |
+
|
255 |
+
|
256 |
+
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
257 |
+
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
258 |
+
Usage: from utils.dataloaders import *; autosplit()
|
259 |
+
Arguments
|
260 |
+
path: Path to images directory
|
261 |
+
weights: Train, val, test weights (list, tuple)
|
262 |
+
annotated_only: Only use images with an annotated txt file
|
263 |
+
"""
|
264 |
+
path = Path(path) # images dir
|
265 |
+
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
|
266 |
+
n = len(files) # number of files
|
267 |
+
random.seed(0) # for reproducibility
|
268 |
+
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
269 |
+
|
270 |
+
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
271 |
+
for x in txt:
|
272 |
+
if (path.parent / x).exists():
|
273 |
+
(path.parent / x).unlink() # remove existing
|
274 |
+
|
275 |
+
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
276 |
+
for i, img in tqdm(zip(indices, files), total=n):
|
277 |
+
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
|
278 |
+
with open(path.parent / txt[i], 'a') as f:
|
279 |
+
f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file
|
280 |
+
|
281 |
+
|
282 |
+
def verify_image_label(args):
|
283 |
+
# Verify one image-label pair
|
284 |
+
im_file, lb_file, prefix = args
|
285 |
+
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
|
286 |
+
try:
|
287 |
+
# verify images
|
288 |
+
im = Image.open(im_file)
|
289 |
+
im.verify() # PIL verify
|
290 |
+
shape = exif_size(im) # image size
|
291 |
+
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
292 |
+
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
293 |
+
if im.format.lower() in ('jpg', 'jpeg'):
|
294 |
+
with open(im_file, 'rb') as f:
|
295 |
+
f.seek(-2, 2)
|
296 |
+
if f.read() != b'\xff\xd9': # corrupt JPEG
|
297 |
+
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
|
298 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
|
299 |
+
|
300 |
+
# verify labels
|
301 |
+
if os.path.isfile(lb_file):
|
302 |
+
nf = 1 # label found
|
303 |
+
with open(lb_file) as f:
|
304 |
+
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
305 |
+
if any(len(x) > 6 for x in lb): # is segment
|
306 |
+
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
307 |
+
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
308 |
+
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
309 |
+
lb = np.array(lb, dtype=np.float32)
|
310 |
+
nl = len(lb)
|
311 |
+
if nl:
|
312 |
+
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
|
313 |
+
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
|
314 |
+
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
|
315 |
+
_, i = np.unique(lb, axis=0, return_index=True)
|
316 |
+
if len(i) < nl: # duplicate row check
|
317 |
+
lb = lb[i] # remove duplicates
|
318 |
+
if segments:
|
319 |
+
segments = [segments[x] for x in i]
|
320 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
|
321 |
+
else:
|
322 |
+
ne = 1 # label empty
|
323 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
324 |
+
else:
|
325 |
+
nm = 1 # label missing
|
326 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
327 |
+
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
|
328 |
+
except Exception as e:
|
329 |
+
nc = 1
|
330 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
|
331 |
+
return [None, None, None, None, nm, nf, ne, nc, msg]
|
utils/general.py
ADDED
@@ -0,0 +1,1083 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
General utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import glob
|
8 |
+
import inspect
|
9 |
+
import logging
|
10 |
+
import logging.config
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import platform
|
14 |
+
import random
|
15 |
+
import re
|
16 |
+
import signal
|
17 |
+
import sys
|
18 |
+
import time
|
19 |
+
import urllib
|
20 |
+
from copy import deepcopy
|
21 |
+
from datetime import datetime
|
22 |
+
from itertools import repeat
|
23 |
+
from multiprocessing.pool import ThreadPool
|
24 |
+
from pathlib import Path
|
25 |
+
from subprocess import check_output
|
26 |
+
from tarfile import is_tarfile
|
27 |
+
from typing import Optional
|
28 |
+
from zipfile import ZipFile, is_zipfile
|
29 |
+
|
30 |
+
import cv2
|
31 |
+
import IPython
|
32 |
+
import numpy as np
|
33 |
+
import pandas as pd
|
34 |
+
import pkg_resources as pkg
|
35 |
+
import torch
|
36 |
+
import torchvision
|
37 |
+
import yaml
|
38 |
+
|
39 |
+
from utils import TryExcept, emojis
|
40 |
+
#from utils.downloads import gsutil_getsize
|
41 |
+
from utils.metrics import box_iou, fitness
|
42 |
+
|
43 |
+
FILE = Path(__file__).resolve()
|
44 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
45 |
+
RANK = int(os.getenv('RANK', -1))
|
46 |
+
|
47 |
+
# Settings
|
48 |
+
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
49 |
+
DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory
|
50 |
+
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
51 |
+
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
52 |
+
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format
|
53 |
+
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
54 |
+
|
55 |
+
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
56 |
+
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
57 |
+
pd.options.display.max_columns = 10
|
58 |
+
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
59 |
+
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
|
60 |
+
os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy)
|
61 |
+
|
62 |
+
|
63 |
+
def is_ascii(s=''):
|
64 |
+
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
|
65 |
+
s = str(s) # convert list, tuple, None, etc. to str
|
66 |
+
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
67 |
+
|
68 |
+
|
69 |
+
def is_chinese(s='人工智能'):
|
70 |
+
# Is string composed of any Chinese characters?
|
71 |
+
return bool(re.search('[\u4e00-\u9fff]', str(s)))
|
72 |
+
|
73 |
+
|
74 |
+
def is_colab():
|
75 |
+
# Is environment a Google Colab instance?
|
76 |
+
return 'google.colab' in sys.modules
|
77 |
+
|
78 |
+
|
79 |
+
def is_notebook():
|
80 |
+
# Is environment a Jupyter notebook? Verified on Colab, Jupyterlab, Kaggle, Paperspace
|
81 |
+
ipython_type = str(type(IPython.get_ipython()))
|
82 |
+
return 'colab' in ipython_type or 'zmqshell' in ipython_type
|
83 |
+
|
84 |
+
|
85 |
+
def is_kaggle():
|
86 |
+
# Is environment a Kaggle Notebook?
|
87 |
+
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
|
88 |
+
|
89 |
+
|
90 |
+
def is_docker() -> bool:
|
91 |
+
"""Check if the process runs inside a docker container."""
|
92 |
+
if Path("/.dockerenv").exists():
|
93 |
+
return True
|
94 |
+
try: # check if docker is in control groups
|
95 |
+
with open("/proc/self/cgroup") as file:
|
96 |
+
return any("docker" in line for line in file)
|
97 |
+
except OSError:
|
98 |
+
return False
|
99 |
+
|
100 |
+
|
101 |
+
def is_writeable(dir, test=False):
|
102 |
+
# Return True if directory has write permissions, test opening a file with write permissions if test=True
|
103 |
+
if not test:
|
104 |
+
return os.access(dir, os.W_OK) # possible issues on Windows
|
105 |
+
file = Path(dir) / 'tmp.txt'
|
106 |
+
try:
|
107 |
+
with open(file, 'w'): # open file with write permissions
|
108 |
+
pass
|
109 |
+
file.unlink() # remove file
|
110 |
+
return True
|
111 |
+
except OSError:
|
112 |
+
return False
|
113 |
+
|
114 |
+
|
115 |
+
LOGGING_NAME = "yolov5"
|
116 |
+
|
117 |
+
|
118 |
+
def set_logging(name=LOGGING_NAME, verbose=True):
|
119 |
+
# sets up logging for the given name
|
120 |
+
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
|
121 |
+
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
122 |
+
logging.config.dictConfig({
|
123 |
+
"version": 1,
|
124 |
+
"disable_existing_loggers": False,
|
125 |
+
"formatters": {
|
126 |
+
name: {
|
127 |
+
"format": "%(message)s"}},
|
128 |
+
"handlers": {
|
129 |
+
name: {
|
130 |
+
"class": "logging.StreamHandler",
|
131 |
+
"formatter": name,
|
132 |
+
"level": level,}},
|
133 |
+
"loggers": {
|
134 |
+
name: {
|
135 |
+
"level": level,
|
136 |
+
"handlers": [name],
|
137 |
+
"propagate": False,}}})
|
138 |
+
|
139 |
+
|
140 |
+
set_logging(LOGGING_NAME) # run before defining LOGGER
|
141 |
+
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
142 |
+
if platform.system() == 'Windows':
|
143 |
+
for fn in LOGGER.info, LOGGER.warning:
|
144 |
+
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
145 |
+
|
146 |
+
|
147 |
+
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
|
148 |
+
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
|
149 |
+
env = os.getenv(env_var)
|
150 |
+
if env:
|
151 |
+
path = Path(env) # use environment variable
|
152 |
+
else:
|
153 |
+
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
|
154 |
+
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
|
155 |
+
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
|
156 |
+
path.mkdir(exist_ok=True) # make if required
|
157 |
+
return path
|
158 |
+
|
159 |
+
|
160 |
+
CONFIG_DIR = user_config_dir() # Ultralytics settings dir
|
161 |
+
|
162 |
+
|
163 |
+
class Profile(contextlib.ContextDecorator):
|
164 |
+
# YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
|
165 |
+
def __init__(self, t=0.0):
|
166 |
+
self.t = t
|
167 |
+
self.cuda = torch.cuda.is_available()
|
168 |
+
|
169 |
+
def __enter__(self):
|
170 |
+
self.start = self.time()
|
171 |
+
return self
|
172 |
+
|
173 |
+
def __exit__(self, type, value, traceback):
|
174 |
+
self.dt = self.time() - self.start # delta-time
|
175 |
+
self.t += self.dt # accumulate dt
|
176 |
+
|
177 |
+
def time(self):
|
178 |
+
if self.cuda:
|
179 |
+
torch.cuda.synchronize()
|
180 |
+
return time.time()
|
181 |
+
|
182 |
+
|
183 |
+
class Timeout(contextlib.ContextDecorator):
|
184 |
+
# YOLOv5 Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
|
185 |
+
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
|
186 |
+
self.seconds = int(seconds)
|
187 |
+
self.timeout_message = timeout_msg
|
188 |
+
self.suppress = bool(suppress_timeout_errors)
|
189 |
+
|
190 |
+
def _timeout_handler(self, signum, frame):
|
191 |
+
raise TimeoutError(self.timeout_message)
|
192 |
+
|
193 |
+
def __enter__(self):
|
194 |
+
if platform.system() != 'Windows': # not supported on Windows
|
195 |
+
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
|
196 |
+
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
|
197 |
+
|
198 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
199 |
+
if platform.system() != 'Windows':
|
200 |
+
signal.alarm(0) # Cancel SIGALRM if it's scheduled
|
201 |
+
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
|
202 |
+
return True
|
203 |
+
|
204 |
+
|
205 |
+
class WorkingDirectory(contextlib.ContextDecorator):
|
206 |
+
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
207 |
+
def __init__(self, new_dir):
|
208 |
+
self.dir = new_dir # new dir
|
209 |
+
self.cwd = Path.cwd().resolve() # current dir
|
210 |
+
|
211 |
+
def __enter__(self):
|
212 |
+
os.chdir(self.dir)
|
213 |
+
|
214 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
215 |
+
os.chdir(self.cwd)
|
216 |
+
|
217 |
+
|
218 |
+
def methods(instance):
|
219 |
+
# Get class/instance methods
|
220 |
+
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
|
221 |
+
|
222 |
+
|
223 |
+
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
|
224 |
+
# Print function arguments (optional args dict)
|
225 |
+
x = inspect.currentframe().f_back # previous frame
|
226 |
+
file, _, func, _, _ = inspect.getframeinfo(x)
|
227 |
+
if args is None: # get args automatically
|
228 |
+
args, _, _, frm = inspect.getargvalues(x)
|
229 |
+
args = {k: v for k, v in frm.items() if k in args}
|
230 |
+
try:
|
231 |
+
file = Path(file).resolve().relative_to(ROOT).with_suffix('')
|
232 |
+
except ValueError:
|
233 |
+
file = Path(file).stem
|
234 |
+
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
|
235 |
+
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
236 |
+
|
237 |
+
|
238 |
+
def init_seeds(seed=0, deterministic=False):
|
239 |
+
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
|
240 |
+
random.seed(seed)
|
241 |
+
np.random.seed(seed)
|
242 |
+
torch.manual_seed(seed)
|
243 |
+
torch.cuda.manual_seed(seed)
|
244 |
+
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
|
245 |
+
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
|
246 |
+
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
|
247 |
+
torch.use_deterministic_algorithms(True)
|
248 |
+
torch.backends.cudnn.deterministic = True
|
249 |
+
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
250 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
251 |
+
|
252 |
+
|
253 |
+
def intersect_dicts(da, db, exclude=()):
|
254 |
+
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
255 |
+
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
|
256 |
+
|
257 |
+
|
258 |
+
def get_default_args(func):
|
259 |
+
# Get func() default arguments
|
260 |
+
signature = inspect.signature(func)
|
261 |
+
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
|
262 |
+
|
263 |
+
|
264 |
+
def get_latest_run(search_dir='.'):
|
265 |
+
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
266 |
+
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
267 |
+
return max(last_list, key=os.path.getctime) if last_list else ''
|
268 |
+
|
269 |
+
|
270 |
+
def file_age(path=__file__):
|
271 |
+
# Return days since last file update
|
272 |
+
dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
|
273 |
+
return dt.days # + dt.seconds / 86400 # fractional days
|
274 |
+
|
275 |
+
|
276 |
+
def file_date(path=__file__):
|
277 |
+
# Return human-readable file modification date, i.e. '2021-3-26'
|
278 |
+
t = datetime.fromtimestamp(Path(path).stat().st_mtime)
|
279 |
+
return f'{t.year}-{t.month}-{t.day}'
|
280 |
+
|
281 |
+
|
282 |
+
def file_size(path):
|
283 |
+
# Return file/dir size (MB)
|
284 |
+
mb = 1 << 20 # bytes to MiB (1024 ** 2)
|
285 |
+
path = Path(path)
|
286 |
+
if path.is_file():
|
287 |
+
return path.stat().st_size / mb
|
288 |
+
elif path.is_dir():
|
289 |
+
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
|
290 |
+
else:
|
291 |
+
return 0.0
|
292 |
+
|
293 |
+
|
294 |
+
def check_online():
|
295 |
+
# Check internet connectivity
|
296 |
+
import socket
|
297 |
+
|
298 |
+
def run_once():
|
299 |
+
# Check once
|
300 |
+
try:
|
301 |
+
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
|
302 |
+
return True
|
303 |
+
except OSError:
|
304 |
+
return False
|
305 |
+
|
306 |
+
return run_once() or run_once() # check twice to increase robustness to intermittent connectivity issues
|
307 |
+
|
308 |
+
|
309 |
+
def git_describe(path=ROOT): # path must be a directory
|
310 |
+
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
311 |
+
try:
|
312 |
+
assert (Path(path) / '.git').is_dir()
|
313 |
+
return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
|
314 |
+
except Exception:
|
315 |
+
return ''
|
316 |
+
|
317 |
+
|
318 |
+
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
|
319 |
+
# Check version vs. required version
|
320 |
+
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
|
321 |
+
result = (current == minimum) if pinned else (current >= minimum) # bool
|
322 |
+
s = f'WARNING ⚠️ {name}{minimum} is required by YOLOv5, but {name}{current} is currently installed' # string
|
323 |
+
if hard:
|
324 |
+
assert result, emojis(s) # assert min requirements met
|
325 |
+
if verbose and not result:
|
326 |
+
LOGGER.warning(s)
|
327 |
+
return result
|
328 |
+
|
329 |
+
|
330 |
+
@TryExcept()
|
331 |
+
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''):
|
332 |
+
# Check installed dependencies meet YOLOv5 requirements (pass *.txt file or list of packages or single package str)
|
333 |
+
prefix = colorstr('red', 'bold', 'requirements:')
|
334 |
+
if isinstance(requirements, Path): # requirements.txt file
|
335 |
+
file = requirements.resolve()
|
336 |
+
assert file.exists(), f"{prefix} {file} not found, check failed."
|
337 |
+
with file.open() as f:
|
338 |
+
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
|
339 |
+
elif isinstance(requirements, str):
|
340 |
+
requirements = [requirements]
|
341 |
+
|
342 |
+
s = ''
|
343 |
+
n = 0
|
344 |
+
for r in requirements:
|
345 |
+
try:
|
346 |
+
pkg.require(r)
|
347 |
+
except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met
|
348 |
+
s += f'"{r}" '
|
349 |
+
n += 1
|
350 |
+
|
351 |
+
if s and install and AUTOINSTALL: # check environment variable
|
352 |
+
LOGGER.info(f"{prefix} YOLOv5 requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
|
353 |
+
try:
|
354 |
+
# assert check_online(), "AutoUpdate skipped (offline)"
|
355 |
+
LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode())
|
356 |
+
source = file if 'file' in locals() else requirements
|
357 |
+
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
358 |
+
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
359 |
+
LOGGER.info(s)
|
360 |
+
except Exception as e:
|
361 |
+
LOGGER.warning(f'{prefix} ❌ {e}')
|
362 |
+
|
363 |
+
|
364 |
+
def check_img_size(imgsz, s=32, floor=0):
|
365 |
+
# Verify image size is a multiple of stride s in each dimension
|
366 |
+
if isinstance(imgsz, int): # integer i.e. img_size=640
|
367 |
+
new_size = max(make_divisible(imgsz, int(s)), floor)
|
368 |
+
else: # list i.e. img_size=[640, 480]
|
369 |
+
imgsz = list(imgsz) # convert to list if tuple
|
370 |
+
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
371 |
+
if new_size != imgsz:
|
372 |
+
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
373 |
+
return new_size
|
374 |
+
|
375 |
+
|
376 |
+
def check_imshow(warn=False):
|
377 |
+
# Check if environment supports image displays
|
378 |
+
try:
|
379 |
+
assert not is_notebook()
|
380 |
+
assert not is_docker()
|
381 |
+
cv2.imshow('test', np.zeros((1, 1, 3)))
|
382 |
+
cv2.waitKey(1)
|
383 |
+
cv2.destroyAllWindows()
|
384 |
+
cv2.waitKey(1)
|
385 |
+
return True
|
386 |
+
except Exception as e:
|
387 |
+
if warn:
|
388 |
+
LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
|
389 |
+
return False
|
390 |
+
|
391 |
+
|
392 |
+
def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
|
393 |
+
# Check file(s) for acceptable suffix
|
394 |
+
if file and suffix:
|
395 |
+
if isinstance(suffix, str):
|
396 |
+
suffix = [suffix]
|
397 |
+
for f in file if isinstance(file, (list, tuple)) else [file]:
|
398 |
+
s = Path(f).suffix.lower() # file suffix
|
399 |
+
if len(s):
|
400 |
+
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
|
401 |
+
|
402 |
+
|
403 |
+
def check_yaml(file, suffix=('.yaml', '.yml')):
|
404 |
+
# Search/download YAML file (if necessary) and return path, checking suffix
|
405 |
+
return check_file(file, suffix)
|
406 |
+
|
407 |
+
|
408 |
+
def check_file(file, suffix=''):
|
409 |
+
# Search/download file (if necessary) and return path
|
410 |
+
check_suffix(file, suffix) # optional
|
411 |
+
file = str(file) # convert to str()
|
412 |
+
if os.path.isfile(file) or not file: # exists
|
413 |
+
return file
|
414 |
+
elif file.startswith(('http:/', 'https:/')): # download
|
415 |
+
url = file # warning: Pathlib turns :// -> :/
|
416 |
+
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
|
417 |
+
if os.path.isfile(file):
|
418 |
+
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
419 |
+
else:
|
420 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
421 |
+
torch.hub.download_url_to_file(url, file)
|
422 |
+
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
|
423 |
+
return file
|
424 |
+
elif file.startswith('clearml://'): # ClearML Dataset ID
|
425 |
+
assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
|
426 |
+
return file
|
427 |
+
else: # search
|
428 |
+
files = []
|
429 |
+
for d in 'data', 'models', 'utils': # search directories
|
430 |
+
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
|
431 |
+
assert len(files), f'File not found: {file}' # assert file was found
|
432 |
+
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
|
433 |
+
return files[0] # return file
|
434 |
+
|
435 |
+
|
436 |
+
def check_font(font=FONT, progress=False):
|
437 |
+
# Download font to CONFIG_DIR if necessary
|
438 |
+
font = Path(font)
|
439 |
+
file = CONFIG_DIR / font.name
|
440 |
+
if not font.exists() and not file.exists():
|
441 |
+
url = f'https://ultralytics.com/assets/{font.name}'
|
442 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
443 |
+
torch.hub.download_url_to_file(url, str(file), progress=progress)
|
444 |
+
|
445 |
+
|
446 |
+
def check_dataset(data, autodownload=True):
|
447 |
+
# Download, check and/or unzip dataset if not found locally
|
448 |
+
|
449 |
+
# Download (optional)
|
450 |
+
extract_dir = ''
|
451 |
+
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
|
452 |
+
download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
|
453 |
+
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
|
454 |
+
extract_dir, autodownload = data.parent, False
|
455 |
+
|
456 |
+
# Read yaml (optional)
|
457 |
+
if isinstance(data, (str, Path)):
|
458 |
+
data = yaml_load(data) # dictionary
|
459 |
+
|
460 |
+
# Checks
|
461 |
+
for k in 'train', 'val', 'names':
|
462 |
+
assert k in data, emojis(f"data.yaml '{k}:' field missing ❌")
|
463 |
+
if isinstance(data['names'], (list, tuple)): # old array format
|
464 |
+
data['names'] = dict(enumerate(data['names'])) # convert to dict
|
465 |
+
assert all(isinstance(k, int) for k in data['names'].keys()), 'data.yaml names keys must be integers, i.e. 2: car'
|
466 |
+
data['nc'] = len(data['names'])
|
467 |
+
|
468 |
+
# Resolve paths
|
469 |
+
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
|
470 |
+
if not path.is_absolute():
|
471 |
+
path = (ROOT / path).resolve()
|
472 |
+
data['path'] = path # download scripts
|
473 |
+
for k in 'train', 'val', 'test':
|
474 |
+
if data.get(k): # prepend path
|
475 |
+
if isinstance(data[k], str):
|
476 |
+
x = (path / data[k]).resolve()
|
477 |
+
if not x.exists() and data[k].startswith('../'):
|
478 |
+
x = (path / data[k][3:]).resolve()
|
479 |
+
data[k] = str(x)
|
480 |
+
else:
|
481 |
+
data[k] = [str((path / x).resolve()) for x in data[k]]
|
482 |
+
|
483 |
+
# Parse yaml
|
484 |
+
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
|
485 |
+
if val:
|
486 |
+
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
487 |
+
if not all(x.exists() for x in val):
|
488 |
+
LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()])
|
489 |
+
if not s or not autodownload:
|
490 |
+
raise Exception('Dataset not found ❌')
|
491 |
+
t = time.time()
|
492 |
+
if s.startswith('http') and s.endswith('.zip'): # URL
|
493 |
+
f = Path(s).name # filename
|
494 |
+
LOGGER.info(f'Downloading {s} to {f}...')
|
495 |
+
torch.hub.download_url_to_file(s, f)
|
496 |
+
Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root
|
497 |
+
unzip_file(f, path=DATASETS_DIR) # unzip
|
498 |
+
Path(f).unlink() # remove zip
|
499 |
+
r = None # success
|
500 |
+
elif s.startswith('bash '): # bash script
|
501 |
+
LOGGER.info(f'Running {s} ...')
|
502 |
+
r = os.system(s)
|
503 |
+
else: # python script
|
504 |
+
r = exec(s, {'yaml': data}) # return None
|
505 |
+
dt = f'({round(time.time() - t, 1)}s)'
|
506 |
+
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌"
|
507 |
+
LOGGER.info(f"Dataset download {s}")
|
508 |
+
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
|
509 |
+
return data # dictionary
|
510 |
+
|
511 |
+
|
512 |
+
def check_amp(model):
|
513 |
+
# Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
|
514 |
+
from models.common import AutoShape, DetectMultiBackend
|
515 |
+
|
516 |
+
def amp_allclose(model, im):
|
517 |
+
# All close FP32 vs AMP results
|
518 |
+
m = AutoShape(model, verbose=False) # model
|
519 |
+
a = m(im).xywhn[0] # FP32 inference
|
520 |
+
m.amp = True
|
521 |
+
b = m(im).xywhn[0] # AMP inference
|
522 |
+
return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance
|
523 |
+
|
524 |
+
prefix = colorstr('AMP: ')
|
525 |
+
device = next(model.parameters()).device # get model device
|
526 |
+
if device.type in ('cpu', 'mps'):
|
527 |
+
return False # AMP only used on CUDA devices
|
528 |
+
f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check
|
529 |
+
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
|
530 |
+
try:
|
531 |
+
assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im)
|
532 |
+
LOGGER.info(f'{prefix}checks passed ✅')
|
533 |
+
return True
|
534 |
+
except Exception:
|
535 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
|
536 |
+
LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}')
|
537 |
+
return False
|
538 |
+
|
539 |
+
|
540 |
+
def yaml_load(file='data.yaml'):
|
541 |
+
# Single-line safe yaml loading
|
542 |
+
with open(file, errors='ignore') as f:
|
543 |
+
return yaml.safe_load(f)
|
544 |
+
|
545 |
+
|
546 |
+
def yaml_save(file='data.yaml', data={}):
|
547 |
+
# Single-line safe yaml saving
|
548 |
+
with open(file, 'w') as f:
|
549 |
+
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
550 |
+
|
551 |
+
|
552 |
+
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
|
553 |
+
# Unzip a *.zip file to path/, excluding files containing strings in exclude list
|
554 |
+
if path is None:
|
555 |
+
path = Path(file).parent # default path
|
556 |
+
with ZipFile(file) as zipObj:
|
557 |
+
for f in zipObj.namelist(): # list all archived filenames in the zip
|
558 |
+
if all(x not in f for x in exclude):
|
559 |
+
zipObj.extract(f, path=path)
|
560 |
+
|
561 |
+
|
562 |
+
def url2file(url):
|
563 |
+
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
|
564 |
+
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
|
565 |
+
return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
|
566 |
+
|
567 |
+
|
568 |
+
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
|
569 |
+
# Multithreaded file download and unzip function, used in data.yaml for autodownload
|
570 |
+
def download_one(url, dir):
|
571 |
+
# Download 1 file
|
572 |
+
success = True
|
573 |
+
if os.path.isfile(url):
|
574 |
+
f = Path(url) # filename
|
575 |
+
else: # does not exist
|
576 |
+
f = dir / Path(url).name
|
577 |
+
LOGGER.info(f'Downloading {url} to {f}...')
|
578 |
+
for i in range(retry + 1):
|
579 |
+
if curl:
|
580 |
+
s = 'sS' if threads > 1 else '' # silent
|
581 |
+
r = os.system(
|
582 |
+
f'curl -# -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue
|
583 |
+
success = r == 0
|
584 |
+
else:
|
585 |
+
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
|
586 |
+
success = f.is_file()
|
587 |
+
if success:
|
588 |
+
break
|
589 |
+
elif i < retry:
|
590 |
+
LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
|
591 |
+
else:
|
592 |
+
LOGGER.warning(f'❌ Failed to download {url}...')
|
593 |
+
|
594 |
+
if unzip and success and (f.suffix == '.gz' or is_zipfile(f) or is_tarfile(f)):
|
595 |
+
LOGGER.info(f'Unzipping {f}...')
|
596 |
+
if is_zipfile(f):
|
597 |
+
unzip_file(f, dir) # unzip
|
598 |
+
elif is_tarfile(f):
|
599 |
+
os.system(f'tar xf {f} --directory {f.parent}') # unzip
|
600 |
+
elif f.suffix == '.gz':
|
601 |
+
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
|
602 |
+
if delete:
|
603 |
+
f.unlink() # remove zip
|
604 |
+
|
605 |
+
dir = Path(dir)
|
606 |
+
dir.mkdir(parents=True, exist_ok=True) # make directory
|
607 |
+
if threads > 1:
|
608 |
+
pool = ThreadPool(threads)
|
609 |
+
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded
|
610 |
+
pool.close()
|
611 |
+
pool.join()
|
612 |
+
else:
|
613 |
+
for u in [url] if isinstance(url, (str, Path)) else url:
|
614 |
+
download_one(u, dir)
|
615 |
+
|
616 |
+
|
617 |
+
def make_divisible(x, divisor):
|
618 |
+
# Returns nearest x divisible by divisor
|
619 |
+
if isinstance(divisor, torch.Tensor):
|
620 |
+
divisor = int(divisor.max()) # to int
|
621 |
+
return math.ceil(x / divisor) * divisor
|
622 |
+
|
623 |
+
|
624 |
+
def clean_str(s):
|
625 |
+
# Cleans a string by replacing special characters with underscore _
|
626 |
+
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
627 |
+
|
628 |
+
|
629 |
+
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
630 |
+
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
631 |
+
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
632 |
+
|
633 |
+
|
634 |
+
def colorstr(*input):
|
635 |
+
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
636 |
+
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
637 |
+
colors = {
|
638 |
+
'black': '\033[30m', # basic colors
|
639 |
+
'red': '\033[31m',
|
640 |
+
'green': '\033[32m',
|
641 |
+
'yellow': '\033[33m',
|
642 |
+
'blue': '\033[34m',
|
643 |
+
'magenta': '\033[35m',
|
644 |
+
'cyan': '\033[36m',
|
645 |
+
'white': '\033[37m',
|
646 |
+
'bright_black': '\033[90m', # bright colors
|
647 |
+
'bright_red': '\033[91m',
|
648 |
+
'bright_green': '\033[92m',
|
649 |
+
'bright_yellow': '\033[93m',
|
650 |
+
'bright_blue': '\033[94m',
|
651 |
+
'bright_magenta': '\033[95m',
|
652 |
+
'bright_cyan': '\033[96m',
|
653 |
+
'bright_white': '\033[97m',
|
654 |
+
'end': '\033[0m', # misc
|
655 |
+
'bold': '\033[1m',
|
656 |
+
'underline': '\033[4m'}
|
657 |
+
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
658 |
+
|
659 |
+
|
660 |
+
def labels_to_class_weights(labels, nc=80):
|
661 |
+
# Get class weights (inverse frequency) from training labels
|
662 |
+
if labels[0] is None: # no labels loaded
|
663 |
+
return torch.Tensor()
|
664 |
+
|
665 |
+
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
666 |
+
classes = labels[:, 0].astype(int) # labels = [class xywh]
|
667 |
+
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
668 |
+
|
669 |
+
# Prepend gridpoint count (for uCE training)
|
670 |
+
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
671 |
+
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
672 |
+
|
673 |
+
weights[weights == 0] = 1 # replace empty bins with 1
|
674 |
+
weights = 1 / weights # number of targets per class
|
675 |
+
weights /= weights.sum() # normalize
|
676 |
+
return torch.from_numpy(weights).float()
|
677 |
+
|
678 |
+
|
679 |
+
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
680 |
+
# Produces image weights based on class_weights and image contents
|
681 |
+
# Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample
|
682 |
+
class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
|
683 |
+
return (class_weights.reshape(1, nc) * class_counts).sum(1)
|
684 |
+
|
685 |
+
|
686 |
+
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
687 |
+
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
688 |
+
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
689 |
+
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
690 |
+
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
691 |
+
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
692 |
+
return [
|
693 |
+
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
694 |
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
695 |
+
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
696 |
+
|
697 |
+
|
698 |
+
def xyxy2xywh(x):
|
699 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
700 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
701 |
+
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
|
702 |
+
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
|
703 |
+
y[..., 2] = x[..., 2] - x[..., 0] # width
|
704 |
+
y[..., 3] = x[..., 3] - x[..., 1] # height
|
705 |
+
return y
|
706 |
+
|
707 |
+
|
708 |
+
def xywh2xyxy(x):
|
709 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
710 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
711 |
+
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
|
712 |
+
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
|
713 |
+
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
|
714 |
+
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
|
715 |
+
return y
|
716 |
+
|
717 |
+
|
718 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
719 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
720 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
721 |
+
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
|
722 |
+
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
|
723 |
+
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
|
724 |
+
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
|
725 |
+
return y
|
726 |
+
|
727 |
+
|
728 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
729 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
730 |
+
if clip:
|
731 |
+
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
|
732 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
733 |
+
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
|
734 |
+
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
|
735 |
+
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
|
736 |
+
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
|
737 |
+
return y
|
738 |
+
|
739 |
+
|
740 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
741 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
742 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
743 |
+
y[..., 0] = w * x[..., 0] + padw # top left x
|
744 |
+
y[..., 1] = h * x[..., 1] + padh # top left y
|
745 |
+
return y
|
746 |
+
|
747 |
+
|
748 |
+
def segment2box(segment, width=640, height=640):
|
749 |
+
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
750 |
+
x, y = segment.T # segment xy
|
751 |
+
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
752 |
+
x, y, = x[inside], y[inside]
|
753 |
+
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
|
754 |
+
|
755 |
+
|
756 |
+
def segments2boxes(segments):
|
757 |
+
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
758 |
+
boxes = []
|
759 |
+
for s in segments:
|
760 |
+
x, y = s.T # segment xy
|
761 |
+
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
762 |
+
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
763 |
+
|
764 |
+
|
765 |
+
def resample_segments(segments, n=1000):
|
766 |
+
# Up-sample an (n,2) segment
|
767 |
+
for i, s in enumerate(segments):
|
768 |
+
s = np.concatenate((s, s[0:1, :]), axis=0)
|
769 |
+
x = np.linspace(0, len(s) - 1, n)
|
770 |
+
xp = np.arange(len(s))
|
771 |
+
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
772 |
+
return segments
|
773 |
+
|
774 |
+
|
775 |
+
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
|
776 |
+
# Rescale boxes (xyxy) from img1_shape to img0_shape
|
777 |
+
if ratio_pad is None: # calculate from img0_shape
|
778 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
779 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
780 |
+
else:
|
781 |
+
gain = ratio_pad[0][0]
|
782 |
+
pad = ratio_pad[1]
|
783 |
+
|
784 |
+
boxes[..., [0, 2]] -= pad[0] # x padding
|
785 |
+
boxes[..., [1, 3]] -= pad[1] # y padding
|
786 |
+
boxes[..., :4] /= gain
|
787 |
+
clip_boxes(boxes, img0_shape)
|
788 |
+
return boxes
|
789 |
+
|
790 |
+
|
791 |
+
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
|
792 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
793 |
+
if ratio_pad is None: # calculate from img0_shape
|
794 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
795 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
796 |
+
else:
|
797 |
+
gain = ratio_pad[0][0]
|
798 |
+
pad = ratio_pad[1]
|
799 |
+
|
800 |
+
segments[:, 0] -= pad[0] # x padding
|
801 |
+
segments[:, 1] -= pad[1] # y padding
|
802 |
+
segments /= gain
|
803 |
+
clip_segments(segments, img0_shape)
|
804 |
+
if normalize:
|
805 |
+
segments[:, 0] /= img0_shape[1] # width
|
806 |
+
segments[:, 1] /= img0_shape[0] # height
|
807 |
+
return segments
|
808 |
+
|
809 |
+
|
810 |
+
def clip_boxes(boxes, shape):
|
811 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
812 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
813 |
+
boxes[..., 0].clamp_(0, shape[1]) # x1
|
814 |
+
boxes[..., 1].clamp_(0, shape[0]) # y1
|
815 |
+
boxes[..., 2].clamp_(0, shape[1]) # x2
|
816 |
+
boxes[..., 3].clamp_(0, shape[0]) # y2
|
817 |
+
else: # np.array (faster grouped)
|
818 |
+
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
|
819 |
+
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|
820 |
+
|
821 |
+
|
822 |
+
def clip_segments(segments, shape):
|
823 |
+
# Clip segments (xy1,xy2,...) to image shape (height, width)
|
824 |
+
if isinstance(segments, torch.Tensor): # faster individually
|
825 |
+
segments[:, 0].clamp_(0, shape[1]) # x
|
826 |
+
segments[:, 1].clamp_(0, shape[0]) # y
|
827 |
+
else: # np.array (faster grouped)
|
828 |
+
segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x
|
829 |
+
segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y
|
830 |
+
|
831 |
+
|
832 |
+
def non_max_suppression(
|
833 |
+
prediction,
|
834 |
+
conf_thres=0.25,
|
835 |
+
iou_thres=0.45,
|
836 |
+
classes=None,
|
837 |
+
agnostic=False,
|
838 |
+
multi_label=False,
|
839 |
+
labels=(),
|
840 |
+
max_det=300,
|
841 |
+
nm=0, # number of masks
|
842 |
+
):
|
843 |
+
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
|
844 |
+
|
845 |
+
Returns:
|
846 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
847 |
+
"""
|
848 |
+
|
849 |
+
# Checks
|
850 |
+
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
851 |
+
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
852 |
+
if isinstance(prediction, (list, tuple)): # YOLOv5 model in validation model, output = (inference_out, loss_out)
|
853 |
+
prediction = prediction[0] # select only inference output
|
854 |
+
|
855 |
+
device = prediction.device
|
856 |
+
mps = 'mps' in device.type # Apple MPS
|
857 |
+
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
|
858 |
+
prediction = prediction.cpu()
|
859 |
+
bs = prediction.shape[0] # batch size
|
860 |
+
nc = prediction.shape[2] - nm - 5 # number of classes
|
861 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
862 |
+
|
863 |
+
# Settings
|
864 |
+
# min_wh = 2 # (pixels) minimum box width and height
|
865 |
+
max_wh = 7680 # (pixels) maximum box width and height
|
866 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
867 |
+
time_limit = 0.5 + 0.05 * bs # seconds to quit after
|
868 |
+
redundant = True # require redundant detections
|
869 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
870 |
+
merge = False # use merge-NMS
|
871 |
+
|
872 |
+
t = time.time()
|
873 |
+
mi = 5 + nc # mask start index
|
874 |
+
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
|
875 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
876 |
+
# Apply constraints
|
877 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
878 |
+
x = x[xc[xi]] # confidence
|
879 |
+
|
880 |
+
# Cat apriori labels if autolabelling
|
881 |
+
if labels and len(labels[xi]):
|
882 |
+
lb = labels[xi]
|
883 |
+
v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
|
884 |
+
v[:, :4] = lb[:, 1:5] # box
|
885 |
+
v[:, 4] = 1.0 # conf
|
886 |
+
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
|
887 |
+
x = torch.cat((x, v), 0)
|
888 |
+
|
889 |
+
# If none remain process next image
|
890 |
+
if not x.shape[0]:
|
891 |
+
continue
|
892 |
+
|
893 |
+
# Compute conf
|
894 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
895 |
+
|
896 |
+
# Box/Mask
|
897 |
+
box = xywh2xyxy(x[:, :4]) # center_x, center_y, width, height) to (x1, y1, x2, y2)
|
898 |
+
mask = x[:, mi:] # zero columns if no masks
|
899 |
+
|
900 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
901 |
+
if multi_label:
|
902 |
+
i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
|
903 |
+
x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
|
904 |
+
else: # best class only
|
905 |
+
conf, j = x[:, 5:mi].max(1, keepdim=True)
|
906 |
+
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
|
907 |
+
|
908 |
+
# Filter by class
|
909 |
+
if classes is not None:
|
910 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
911 |
+
|
912 |
+
# Apply finite constraint
|
913 |
+
# if not torch.isfinite(x).all():
|
914 |
+
# x = x[torch.isfinite(x).all(1)]
|
915 |
+
|
916 |
+
# Check shape
|
917 |
+
n = x.shape[0] # number of boxes
|
918 |
+
if not n: # no boxes
|
919 |
+
continue
|
920 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes
|
921 |
+
|
922 |
+
# Batched NMS
|
923 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
924 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
925 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
926 |
+
i = i[:max_det] # limit detections
|
927 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
928 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
929 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
930 |
+
weights = iou * scores[None] # box weights
|
931 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
932 |
+
if redundant:
|
933 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
934 |
+
|
935 |
+
output[xi] = x[i]
|
936 |
+
if mps:
|
937 |
+
output[xi] = output[xi].to(device)
|
938 |
+
if (time.time() - t) > time_limit:
|
939 |
+
LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
|
940 |
+
break # time limit exceeded
|
941 |
+
|
942 |
+
return output
|
943 |
+
|
944 |
+
|
945 |
+
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
946 |
+
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
947 |
+
x = torch.load(f, map_location=torch.device('cpu'))
|
948 |
+
if x.get('ema'):
|
949 |
+
x['model'] = x['ema'] # replace model with ema
|
950 |
+
for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
|
951 |
+
x[k] = None
|
952 |
+
x['epoch'] = -1
|
953 |
+
x['model'].half() # to FP16
|
954 |
+
for p in x['model'].parameters():
|
955 |
+
p.requires_grad = False
|
956 |
+
torch.save(x, s or f)
|
957 |
+
mb = os.path.getsize(s or f) / 1E6 # filesize
|
958 |
+
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
959 |
+
|
960 |
+
|
961 |
+
def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
|
962 |
+
evolve_csv = save_dir / 'evolve.csv'
|
963 |
+
evolve_yaml = save_dir / 'hyp_evolve.yaml'
|
964 |
+
keys = tuple(keys) + tuple(hyp.keys()) # [results + hyps]
|
965 |
+
keys = tuple(x.strip() for x in keys)
|
966 |
+
vals = results + tuple(hyp.values())
|
967 |
+
n = len(keys)
|
968 |
+
|
969 |
+
# Download (optional)
|
970 |
+
# if bucket:
|
971 |
+
# url = f'gs://{bucket}/evolve.csv'
|
972 |
+
# if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
|
973 |
+
# os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
|
974 |
+
|
975 |
+
# Log to evolve.csv
|
976 |
+
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
|
977 |
+
with open(evolve_csv, 'a') as f:
|
978 |
+
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
|
979 |
+
|
980 |
+
# Save yaml
|
981 |
+
with open(evolve_yaml, 'w') as f:
|
982 |
+
data = pd.read_csv(evolve_csv, skipinitialspace=True)
|
983 |
+
data = data.rename(columns=lambda x: x.strip()) # strip keys
|
984 |
+
i = np.argmax(fitness(data.values[:, :4])) #
|
985 |
+
generations = len(data)
|
986 |
+
f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
|
987 |
+
f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
|
988 |
+
'\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
|
989 |
+
yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
|
990 |
+
|
991 |
+
# Print to screen
|
992 |
+
LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
|
993 |
+
', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
|
994 |
+
for x in vals) + '\n\n')
|
995 |
+
|
996 |
+
if bucket:
|
997 |
+
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
|
998 |
+
|
999 |
+
|
1000 |
+
def apply_classifier(x, model, img, im0):
|
1001 |
+
# Apply a second stage classifier to YOLO outputs
|
1002 |
+
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
|
1003 |
+
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
1004 |
+
for i, d in enumerate(x): # per image
|
1005 |
+
if d is not None and len(d):
|
1006 |
+
d = d.clone()
|
1007 |
+
|
1008 |
+
# Reshape and pad cutouts
|
1009 |
+
b = xyxy2xywh(d[:, :4]) # boxes
|
1010 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
1011 |
+
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
1012 |
+
d[:, :4] = xywh2xyxy(b).long()
|
1013 |
+
|
1014 |
+
# Rescale boxes from img_size to im0 size
|
1015 |
+
scale_boxes(img.shape[2:], d[:, :4], im0[i].shape)
|
1016 |
+
|
1017 |
+
# Classes
|
1018 |
+
pred_cls1 = d[:, 5].long()
|
1019 |
+
ims = []
|
1020 |
+
for a in d:
|
1021 |
+
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
1022 |
+
im = cv2.resize(cutout, (224, 224)) # BGR
|
1023 |
+
|
1024 |
+
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
1025 |
+
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
1026 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
1027 |
+
ims.append(im)
|
1028 |
+
|
1029 |
+
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
1030 |
+
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
1031 |
+
|
1032 |
+
return x
|
1033 |
+
|
1034 |
+
|
1035 |
+
def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
1036 |
+
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
|
1037 |
+
path = Path(path) # os-agnostic
|
1038 |
+
if path.exists() and not exist_ok:
|
1039 |
+
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
|
1040 |
+
|
1041 |
+
# Method 1
|
1042 |
+
for n in range(2, 9999):
|
1043 |
+
p = f'{path}{sep}{n}{suffix}' # increment path
|
1044 |
+
if not os.path.exists(p): #
|
1045 |
+
break
|
1046 |
+
path = Path(p)
|
1047 |
+
|
1048 |
+
# Method 2 (deprecated)
|
1049 |
+
# dirs = glob.glob(f"{path}{sep}*") # similar paths
|
1050 |
+
# matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
|
1051 |
+
# i = [int(m.groups()[0]) for m in matches if m] # indices
|
1052 |
+
# n = max(i) + 1 if i else 2 # increment number
|
1053 |
+
# path = Path(f"{path}{sep}{n}{suffix}") # increment path
|
1054 |
+
|
1055 |
+
if mkdir:
|
1056 |
+
path.mkdir(parents=True, exist_ok=True) # make directory
|
1057 |
+
|
1058 |
+
return path
|
1059 |
+
|
1060 |
+
|
1061 |
+
# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------------
|
1062 |
+
imshow_ = cv2.imshow # copy to avoid recursion errors
|
1063 |
+
|
1064 |
+
|
1065 |
+
def imread(path, flags=cv2.IMREAD_COLOR):
|
1066 |
+
return cv2.imdecode(np.fromfile(path, np.uint8), flags)
|
1067 |
+
|
1068 |
+
|
1069 |
+
def imwrite(path, im):
|
1070 |
+
try:
|
1071 |
+
cv2.imencode(Path(path).suffix, im)[1].tofile(path)
|
1072 |
+
return True
|
1073 |
+
except Exception:
|
1074 |
+
return False
|
1075 |
+
|
1076 |
+
|
1077 |
+
def imshow(path, im):
|
1078 |
+
imshow_(path.encode('unicode_escape').decode(), im)
|
1079 |
+
|
1080 |
+
|
1081 |
+
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine
|
1082 |
+
|
1083 |
+
# Variables ------------------------------------------------------------------------------------------------------------
|
utils/loss.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Loss functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from utils.metrics import bbox_iou
|
10 |
+
from utils.torch_utils import de_parallel
|
11 |
+
|
12 |
+
|
13 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
14 |
+
# return positive, negative label smoothing BCE targets
|
15 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
16 |
+
|
17 |
+
|
18 |
+
class BCEBlurWithLogitsLoss(nn.Module):
|
19 |
+
# BCEwithLogitLoss() with reduced missing label effects.
|
20 |
+
def __init__(self, alpha=0.05):
|
21 |
+
super().__init__()
|
22 |
+
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
23 |
+
self.alpha = alpha
|
24 |
+
|
25 |
+
def forward(self, pred, true):
|
26 |
+
loss = self.loss_fcn(pred, true)
|
27 |
+
pred = torch.sigmoid(pred) # prob from logits
|
28 |
+
dx = pred - true # reduce only missing label effects
|
29 |
+
# dx = (pred - true).abs() # reduce missing label and false label effects
|
30 |
+
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
31 |
+
loss *= alpha_factor
|
32 |
+
return loss.mean()
|
33 |
+
|
34 |
+
|
35 |
+
class FocalLoss(nn.Module):
|
36 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
37 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
38 |
+
super().__init__()
|
39 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
40 |
+
self.gamma = gamma
|
41 |
+
self.alpha = alpha
|
42 |
+
self.reduction = loss_fcn.reduction
|
43 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
44 |
+
|
45 |
+
def forward(self, pred, true):
|
46 |
+
loss = self.loss_fcn(pred, true)
|
47 |
+
# p_t = torch.exp(-loss)
|
48 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
49 |
+
|
50 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
51 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
52 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
53 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
54 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
55 |
+
loss *= alpha_factor * modulating_factor
|
56 |
+
|
57 |
+
if self.reduction == 'mean':
|
58 |
+
return loss.mean()
|
59 |
+
elif self.reduction == 'sum':
|
60 |
+
return loss.sum()
|
61 |
+
else: # 'none'
|
62 |
+
return loss
|
63 |
+
|
64 |
+
|
65 |
+
class QFocalLoss(nn.Module):
|
66 |
+
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
67 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
68 |
+
super().__init__()
|
69 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
70 |
+
self.gamma = gamma
|
71 |
+
self.alpha = alpha
|
72 |
+
self.reduction = loss_fcn.reduction
|
73 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
74 |
+
|
75 |
+
def forward(self, pred, true):
|
76 |
+
loss = self.loss_fcn(pred, true)
|
77 |
+
|
78 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
79 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
80 |
+
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
81 |
+
loss *= alpha_factor * modulating_factor
|
82 |
+
|
83 |
+
if self.reduction == 'mean':
|
84 |
+
return loss.mean()
|
85 |
+
elif self.reduction == 'sum':
|
86 |
+
return loss.sum()
|
87 |
+
else: # 'none'
|
88 |
+
return loss
|
89 |
+
|
90 |
+
|
91 |
+
class ComputeLoss:
|
92 |
+
sort_obj_iou = False
|
93 |
+
|
94 |
+
# Compute losses
|
95 |
+
def __init__(self, model, autobalance=False):
|
96 |
+
device = next(model.parameters()).device # get model device
|
97 |
+
h = model.hyp # hyperparameters
|
98 |
+
|
99 |
+
# Define criteria
|
100 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
101 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
102 |
+
|
103 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
104 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
105 |
+
|
106 |
+
# Focal loss
|
107 |
+
g = h['fl_gamma'] # focal loss gamma
|
108 |
+
if g > 0:
|
109 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
110 |
+
|
111 |
+
m = de_parallel(model).model[-1] # Detect() module
|
112 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
113 |
+
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
114 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
115 |
+
self.na = m.na # number of anchors
|
116 |
+
self.nc = m.nc # number of classes
|
117 |
+
self.nl = m.nl # number of layers
|
118 |
+
self.anchors = m.anchors
|
119 |
+
self.device = device
|
120 |
+
|
121 |
+
def __call__(self, p, targets): # predictions, targets
|
122 |
+
lcls = torch.zeros(1, device=self.device) # class loss
|
123 |
+
lbox = torch.zeros(1, device=self.device) # box loss
|
124 |
+
lobj = torch.zeros(1, device=self.device) # object loss
|
125 |
+
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
|
126 |
+
|
127 |
+
# Losses
|
128 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
129 |
+
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
130 |
+
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
|
131 |
+
|
132 |
+
n = b.shape[0] # number of targets
|
133 |
+
if n:
|
134 |
+
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
|
135 |
+
pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
|
136 |
+
|
137 |
+
# Regression
|
138 |
+
pxy = pxy.sigmoid() * 2 - 0.5
|
139 |
+
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
140 |
+
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
141 |
+
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
142 |
+
lbox += (1.0 - iou).mean() # iou loss
|
143 |
+
|
144 |
+
# Objectness
|
145 |
+
iou = iou.detach().clamp(0).type(tobj.dtype)
|
146 |
+
if self.sort_obj_iou:
|
147 |
+
j = iou.argsort()
|
148 |
+
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
|
149 |
+
if self.gr < 1:
|
150 |
+
iou = (1.0 - self.gr) + self.gr * iou
|
151 |
+
tobj[b, a, gj, gi] = iou # iou ratio
|
152 |
+
|
153 |
+
# Classification
|
154 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
155 |
+
t = torch.full_like(pcls, self.cn, device=self.device) # targets
|
156 |
+
t[range(n), tcls[i]] = self.cp
|
157 |
+
lcls += self.BCEcls(pcls, t) # BCE
|
158 |
+
|
159 |
+
# Append targets to text file
|
160 |
+
# with open('targets.txt', 'a') as file:
|
161 |
+
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
162 |
+
|
163 |
+
obji = self.BCEobj(pi[..., 4], tobj)
|
164 |
+
lobj += obji * self.balance[i] # obj loss
|
165 |
+
if self.autobalance:
|
166 |
+
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
167 |
+
|
168 |
+
if self.autobalance:
|
169 |
+
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
170 |
+
lbox *= self.hyp['box']
|
171 |
+
lobj *= self.hyp['obj']
|
172 |
+
lcls *= self.hyp['cls']
|
173 |
+
bs = tobj.shape[0] # batch size
|
174 |
+
|
175 |
+
return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
|
176 |
+
|
177 |
+
def build_targets(self, p, targets):
|
178 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
179 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
180 |
+
tcls, tbox, indices, anch = [], [], [], []
|
181 |
+
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
|
182 |
+
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
183 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
|
184 |
+
|
185 |
+
g = 0.5 # bias
|
186 |
+
off = torch.tensor(
|
187 |
+
[
|
188 |
+
[0, 0],
|
189 |
+
[1, 0],
|
190 |
+
[0, 1],
|
191 |
+
[-1, 0],
|
192 |
+
[0, -1], # j,k,l,m
|
193 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
194 |
+
],
|
195 |
+
device=self.device).float() * g # offsets
|
196 |
+
|
197 |
+
for i in range(self.nl):
|
198 |
+
anchors, shape = self.anchors[i], p[i].shape
|
199 |
+
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
200 |
+
|
201 |
+
# Match targets to anchors
|
202 |
+
t = targets * gain # shape(3,n,7)
|
203 |
+
if nt:
|
204 |
+
# Matches
|
205 |
+
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
206 |
+
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
207 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
208 |
+
t = t[j] # filter
|
209 |
+
|
210 |
+
# Offsets
|
211 |
+
gxy = t[:, 2:4] # grid xy
|
212 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
213 |
+
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
214 |
+
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
215 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
216 |
+
t = t.repeat((5, 1, 1))[j]
|
217 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
218 |
+
else:
|
219 |
+
t = targets[0]
|
220 |
+
offsets = 0
|
221 |
+
|
222 |
+
# Define
|
223 |
+
bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
|
224 |
+
a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
|
225 |
+
gij = (gxy - offsets).long()
|
226 |
+
gi, gj = gij.T # grid indices
|
227 |
+
|
228 |
+
# Append
|
229 |
+
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
|
230 |
+
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
231 |
+
anch.append(anchors[a]) # anchors
|
232 |
+
tcls.append(c) # class
|
233 |
+
|
234 |
+
return tcls, tbox, indices, anch
|
utils/metrics.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Model validation metrics
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
|
14 |
+
from utils import TryExcept, threaded
|
15 |
+
|
16 |
+
|
17 |
+
def fitness(x):
|
18 |
+
# Model fitness as a weighted combination of metrics
|
19 |
+
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
20 |
+
return (x[:, :4] * w).sum(1)
|
21 |
+
|
22 |
+
|
23 |
+
def smooth(y, f=0.05):
|
24 |
+
# Box filter of fraction f
|
25 |
+
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
26 |
+
p = np.ones(nf // 2) # ones padding
|
27 |
+
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
28 |
+
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
29 |
+
|
30 |
+
|
31 |
+
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
|
32 |
+
""" Compute the average precision, given the recall and precision curves.
|
33 |
+
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
34 |
+
# Arguments
|
35 |
+
tp: True positives (nparray, nx1 or nx10).
|
36 |
+
conf: Objectness value from 0-1 (nparray).
|
37 |
+
pred_cls: Predicted object classes (nparray).
|
38 |
+
target_cls: True object classes (nparray).
|
39 |
+
plot: Plot precision-recall curve at mAP@0.5
|
40 |
+
save_dir: Plot save directory
|
41 |
+
# Returns
|
42 |
+
The average precision as computed in py-faster-rcnn.
|
43 |
+
"""
|
44 |
+
|
45 |
+
# Sort by objectness
|
46 |
+
i = np.argsort(-conf)
|
47 |
+
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
48 |
+
|
49 |
+
# Find unique classes
|
50 |
+
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
51 |
+
nc = unique_classes.shape[0] # number of classes, number of detections
|
52 |
+
|
53 |
+
# Create Precision-Recall curve and compute AP for each class
|
54 |
+
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
55 |
+
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
56 |
+
for ci, c in enumerate(unique_classes):
|
57 |
+
i = pred_cls == c
|
58 |
+
n_l = nt[ci] # number of labels
|
59 |
+
n_p = i.sum() # number of predictions
|
60 |
+
if n_p == 0 or n_l == 0:
|
61 |
+
continue
|
62 |
+
|
63 |
+
# Accumulate FPs and TPs
|
64 |
+
fpc = (1 - tp[i]).cumsum(0)
|
65 |
+
tpc = tp[i].cumsum(0)
|
66 |
+
|
67 |
+
# Recall
|
68 |
+
recall = tpc / (n_l + eps) # recall curve
|
69 |
+
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
70 |
+
|
71 |
+
# Precision
|
72 |
+
precision = tpc / (tpc + fpc) # precision curve
|
73 |
+
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
74 |
+
|
75 |
+
# AP from recall-precision curve
|
76 |
+
for j in range(tp.shape[1]):
|
77 |
+
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
78 |
+
if plot and j == 0:
|
79 |
+
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
80 |
+
|
81 |
+
# Compute F1 (harmonic mean of precision and recall)
|
82 |
+
f1 = 2 * p * r / (p + r + eps)
|
83 |
+
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
84 |
+
names = dict(enumerate(names)) # to dict
|
85 |
+
if plot:
|
86 |
+
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
|
87 |
+
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
|
88 |
+
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
|
89 |
+
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
|
90 |
+
|
91 |
+
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
92 |
+
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
93 |
+
tp = (r * nt).round() # true positives
|
94 |
+
fp = (tp / (p + eps) - tp).round() # false positives
|
95 |
+
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
96 |
+
|
97 |
+
|
98 |
+
def compute_ap(recall, precision):
|
99 |
+
""" Compute the average precision, given the recall and precision curves
|
100 |
+
# Arguments
|
101 |
+
recall: The recall curve (list)
|
102 |
+
precision: The precision curve (list)
|
103 |
+
# Returns
|
104 |
+
Average precision, precision curve, recall curve
|
105 |
+
"""
|
106 |
+
|
107 |
+
# Append sentinel values to beginning and end
|
108 |
+
mrec = np.concatenate(([0.0], recall, [1.0]))
|
109 |
+
mpre = np.concatenate(([1.0], precision, [0.0]))
|
110 |
+
|
111 |
+
# Compute the precision envelope
|
112 |
+
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
113 |
+
|
114 |
+
# Integrate area under curve
|
115 |
+
method = 'interp' # methods: 'continuous', 'interp'
|
116 |
+
if method == 'interp':
|
117 |
+
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
118 |
+
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
119 |
+
else: # 'continuous'
|
120 |
+
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
121 |
+
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
122 |
+
|
123 |
+
return ap, mpre, mrec
|
124 |
+
|
125 |
+
|
126 |
+
class ConfusionMatrix:
|
127 |
+
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
128 |
+
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
129 |
+
self.matrix = np.zeros((nc + 1, nc + 1))
|
130 |
+
self.nc = nc # number of classes
|
131 |
+
self.conf = conf
|
132 |
+
self.iou_thres = iou_thres
|
133 |
+
|
134 |
+
def process_batch(self, detections, labels):
|
135 |
+
"""
|
136 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
137 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
138 |
+
Arguments:
|
139 |
+
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
140 |
+
labels (Array[M, 5]), class, x1, y1, x2, y2
|
141 |
+
Returns:
|
142 |
+
None, updates confusion matrix accordingly
|
143 |
+
"""
|
144 |
+
if detections is None:
|
145 |
+
gt_classes = labels.int()
|
146 |
+
for gc in gt_classes:
|
147 |
+
self.matrix[self.nc, gc] += 1 # background FN
|
148 |
+
return
|
149 |
+
|
150 |
+
detections = detections[detections[:, 4] > self.conf]
|
151 |
+
gt_classes = labels[:, 0].int()
|
152 |
+
detection_classes = detections[:, 5].int()
|
153 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
154 |
+
|
155 |
+
x = torch.where(iou > self.iou_thres)
|
156 |
+
if x[0].shape[0]:
|
157 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
158 |
+
if x[0].shape[0] > 1:
|
159 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
160 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
161 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
162 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
163 |
+
else:
|
164 |
+
matches = np.zeros((0, 3))
|
165 |
+
|
166 |
+
n = matches.shape[0] > 0
|
167 |
+
m0, m1, _ = matches.transpose().astype(int)
|
168 |
+
for i, gc in enumerate(gt_classes):
|
169 |
+
j = m0 == i
|
170 |
+
if n and sum(j) == 1:
|
171 |
+
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
172 |
+
else:
|
173 |
+
self.matrix[self.nc, gc] += 1 # true background
|
174 |
+
|
175 |
+
if n:
|
176 |
+
for i, dc in enumerate(detection_classes):
|
177 |
+
if not any(m1 == i):
|
178 |
+
self.matrix[dc, self.nc] += 1 # predicted background
|
179 |
+
|
180 |
+
def tp_fp(self):
|
181 |
+
tp = self.matrix.diagonal() # true positives
|
182 |
+
fp = self.matrix.sum(1) - tp # false positives
|
183 |
+
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
184 |
+
return tp[:-1], fp[:-1] # remove background class
|
185 |
+
|
186 |
+
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
|
187 |
+
def plot(self, normalize=True, save_dir='', names=()):
|
188 |
+
import seaborn as sn
|
189 |
+
|
190 |
+
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
191 |
+
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
192 |
+
|
193 |
+
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
194 |
+
nc, nn = self.nc, len(names) # number of classes, names
|
195 |
+
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
196 |
+
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
197 |
+
ticklabels = (names + ['background']) if labels else "auto"
|
198 |
+
with warnings.catch_warnings():
|
199 |
+
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
200 |
+
sn.heatmap(array,
|
201 |
+
ax=ax,
|
202 |
+
annot=nc < 30,
|
203 |
+
annot_kws={
|
204 |
+
"size": 8},
|
205 |
+
cmap='Blues',
|
206 |
+
fmt='.2f',
|
207 |
+
square=True,
|
208 |
+
vmin=0.0,
|
209 |
+
xticklabels=ticklabels,
|
210 |
+
yticklabels=ticklabels).set_facecolor((1, 1, 1))
|
211 |
+
ax.set_xlabel('True')
|
212 |
+
ax.set_ylabel('Predicted')
|
213 |
+
ax.set_title('Confusion Matrix')
|
214 |
+
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
215 |
+
plt.close(fig)
|
216 |
+
|
217 |
+
def print(self):
|
218 |
+
for i in range(self.nc + 1):
|
219 |
+
print(' '.join(map(str, self.matrix[i])))
|
220 |
+
|
221 |
+
|
222 |
+
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
223 |
+
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
224 |
+
|
225 |
+
# Get the coordinates of bounding boxes
|
226 |
+
if xywh: # transform from xywh to xyxy
|
227 |
+
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
228 |
+
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
229 |
+
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
230 |
+
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
231 |
+
else: # x1, y1, x2, y2 = box1
|
232 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
233 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
234 |
+
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
|
235 |
+
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
|
236 |
+
|
237 |
+
# Intersection area
|
238 |
+
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
|
239 |
+
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
|
240 |
+
|
241 |
+
# Union Area
|
242 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
243 |
+
|
244 |
+
# IoU
|
245 |
+
iou = inter / union
|
246 |
+
if CIoU or DIoU or GIoU:
|
247 |
+
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
|
248 |
+
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
|
249 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
250 |
+
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
251 |
+
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
252 |
+
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
253 |
+
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
|
254 |
+
with torch.no_grad():
|
255 |
+
alpha = v / (v - iou + (1 + eps))
|
256 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
257 |
+
return iou - rho2 / c2 # DIoU
|
258 |
+
c_area = cw * ch + eps # convex area
|
259 |
+
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
260 |
+
return iou # IoU
|
261 |
+
|
262 |
+
|
263 |
+
def box_iou(box1, box2, eps=1e-7):
|
264 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
265 |
+
"""
|
266 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
267 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
268 |
+
Arguments:
|
269 |
+
box1 (Tensor[N, 4])
|
270 |
+
box2 (Tensor[M, 4])
|
271 |
+
Returns:
|
272 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
273 |
+
IoU values for every element in boxes1 and boxes2
|
274 |
+
"""
|
275 |
+
|
276 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
277 |
+
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
|
278 |
+
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
279 |
+
|
280 |
+
# IoU = inter / (area1 + area2 - inter)
|
281 |
+
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
|
282 |
+
|
283 |
+
|
284 |
+
def bbox_ioa(box1, box2, eps=1e-7):
|
285 |
+
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
286 |
+
box1: np.array of shape(4)
|
287 |
+
box2: np.array of shape(nx4)
|
288 |
+
returns: np.array of shape(n)
|
289 |
+
"""
|
290 |
+
|
291 |
+
# Get the coordinates of bounding boxes
|
292 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
293 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
294 |
+
|
295 |
+
# Intersection area
|
296 |
+
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
297 |
+
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
298 |
+
|
299 |
+
# box2 area
|
300 |
+
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
301 |
+
|
302 |
+
# Intersection over box2 area
|
303 |
+
return inter_area / box2_area
|
304 |
+
|
305 |
+
|
306 |
+
def wh_iou(wh1, wh2, eps=1e-7):
|
307 |
+
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
308 |
+
wh1 = wh1[:, None] # [N,1,2]
|
309 |
+
wh2 = wh2[None] # [1,M,2]
|
310 |
+
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
311 |
+
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter)
|
312 |
+
|
313 |
+
|
314 |
+
# Plots ----------------------------------------------------------------------------------------------------------------
|
315 |
+
|
316 |
+
|
317 |
+
@threaded
|
318 |
+
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
319 |
+
# Precision-recall curve
|
320 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
321 |
+
py = np.stack(py, axis=1)
|
322 |
+
|
323 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
324 |
+
for i, y in enumerate(py.T):
|
325 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
326 |
+
else:
|
327 |
+
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
328 |
+
|
329 |
+
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
330 |
+
ax.set_xlabel('Recall')
|
331 |
+
ax.set_ylabel('Precision')
|
332 |
+
ax.set_xlim(0, 1)
|
333 |
+
ax.set_ylim(0, 1)
|
334 |
+
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
335 |
+
ax.set_title('Precision-Recall Curve')
|
336 |
+
fig.savefig(save_dir, dpi=250)
|
337 |
+
plt.close(fig)
|
338 |
+
|
339 |
+
|
340 |
+
@threaded
|
341 |
+
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
342 |
+
# Metric-confidence curve
|
343 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
344 |
+
|
345 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
346 |
+
for i, y in enumerate(py):
|
347 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
348 |
+
else:
|
349 |
+
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
350 |
+
|
351 |
+
y = smooth(py.mean(0), 0.05)
|
352 |
+
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
353 |
+
ax.set_xlabel(xlabel)
|
354 |
+
ax.set_ylabel(ylabel)
|
355 |
+
ax.set_xlim(0, 1)
|
356 |
+
ax.set_ylim(0, 1)
|
357 |
+
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
358 |
+
ax.set_title(f'{ylabel}-Confidence Curve')
|
359 |
+
fig.savefig(save_dir, dpi=250)
|
360 |
+
plt.close(fig)
|
utils/plots.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Plotting utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
from copy import copy
|
10 |
+
from pathlib import Path
|
11 |
+
from urllib.error import URLError
|
12 |
+
|
13 |
+
import cv2
|
14 |
+
import matplotlib
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import numpy as np
|
17 |
+
import pandas as pd
|
18 |
+
import seaborn as sn
|
19 |
+
import torch
|
20 |
+
from PIL import Image, ImageDraw, ImageFont
|
21 |
+
|
22 |
+
from utils import TryExcept, threaded
|
23 |
+
from utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_boxes, increment_path,
|
24 |
+
is_ascii, xywh2xyxy, xyxy2xywh)
|
25 |
+
from utils.metrics import fitness
|
26 |
+
#from utils.segment.general import scale_image
|
27 |
+
|
28 |
+
# Settings
|
29 |
+
RANK = int(os.getenv('RANK', -1))
|
30 |
+
matplotlib.rc('font', **{'size': 11})
|
31 |
+
matplotlib.use('Agg') # for writing to files only
|
32 |
+
|
33 |
+
|
34 |
+
class Colors:
|
35 |
+
# Ultralytics color palette https://ultralytics.com/
|
36 |
+
def __init__(self):
|
37 |
+
# hex = matplotlib.colors.TABLEAU_COLORS.values()
|
38 |
+
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
|
39 |
+
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
|
40 |
+
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
|
41 |
+
self.n = len(self.palette)
|
42 |
+
|
43 |
+
def __call__(self, i, bgr=False):
|
44 |
+
c = self.palette[int(i) % self.n]
|
45 |
+
return (c[2], c[1], c[0]) if bgr else c
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def hex2rgb(h): # rgb order (PIL)
|
49 |
+
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
50 |
+
|
51 |
+
|
52 |
+
colors = Colors() # create instance for 'from utils.plots import colors'
|
53 |
+
|
54 |
+
|
55 |
+
def check_pil_font(font=FONT, size=10):
|
56 |
+
# Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
|
57 |
+
font = Path(font)
|
58 |
+
font = font if font.exists() else (CONFIG_DIR / font.name)
|
59 |
+
try:
|
60 |
+
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
|
61 |
+
except Exception: # download if missing
|
62 |
+
try:
|
63 |
+
check_font(font)
|
64 |
+
return ImageFont.truetype(str(font), size)
|
65 |
+
except TypeError:
|
66 |
+
check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
|
67 |
+
except URLError: # not online
|
68 |
+
return ImageFont.load_default()
|
69 |
+
|
70 |
+
|
71 |
+
class Annotator:
|
72 |
+
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
|
73 |
+
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
74 |
+
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
|
75 |
+
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
|
76 |
+
self.pil = pil or non_ascii
|
77 |
+
if self.pil: # use PIL
|
78 |
+
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
79 |
+
self.draw = ImageDraw.Draw(self.im)
|
80 |
+
self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
|
81 |
+
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
|
82 |
+
else: # use cv2
|
83 |
+
self.im = im
|
84 |
+
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
|
85 |
+
|
86 |
+
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
|
87 |
+
# Add one xyxy box to image with label
|
88 |
+
if self.pil or not is_ascii(label):
|
89 |
+
self.draw.rectangle(box, width=self.lw, outline=color) # box
|
90 |
+
if label:
|
91 |
+
w, h = self.font.getsize(label) # text width, height (WARNING: deprecated) in 9.2.0
|
92 |
+
# _, _, w, h = self.font.getbbox(label) # text width, height (New)
|
93 |
+
outside = box[1] - h >= 0 # label fits outside box
|
94 |
+
self.draw.rectangle(
|
95 |
+
(box[0], box[1] - h if outside else box[1], box[0] + w + 1,
|
96 |
+
box[1] + 1 if outside else box[1] + h + 1),
|
97 |
+
fill=color,
|
98 |
+
)
|
99 |
+
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
|
100 |
+
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
|
101 |
+
else: # cv2
|
102 |
+
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
103 |
+
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
104 |
+
if label:
|
105 |
+
tf = max(self.lw - 1, 1) # font thickness
|
106 |
+
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
|
107 |
+
outside = p1[1] - h >= 3
|
108 |
+
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
|
109 |
+
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
|
110 |
+
cv2.putText(self.im,
|
111 |
+
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
|
112 |
+
0,
|
113 |
+
self.lw / 3,
|
114 |
+
txt_color,
|
115 |
+
thickness=tf,
|
116 |
+
lineType=cv2.LINE_AA)
|
117 |
+
|
118 |
+
# def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
|
119 |
+
# """Plot masks at once.
|
120 |
+
# Args:
|
121 |
+
# masks (tensor): predicted masks on cuda, shape: [n, h, w]
|
122 |
+
# colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
|
123 |
+
# im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
|
124 |
+
# alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
|
125 |
+
# """
|
126 |
+
# if self.pil:
|
127 |
+
# # convert to numpy first
|
128 |
+
# self.im = np.asarray(self.im).copy()
|
129 |
+
# if len(masks) == 0:
|
130 |
+
# self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
131 |
+
# colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
|
132 |
+
# colors = colors[:, None, None] # shape(n,1,1,3)
|
133 |
+
# masks = masks.unsqueeze(3) # shape(n,h,w,1)
|
134 |
+
# masks_color = masks * (colors * alpha) # shape(n,h,w,3)
|
135 |
+
|
136 |
+
# inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
|
137 |
+
# mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
|
138 |
+
|
139 |
+
# im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
140 |
+
# im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
141 |
+
# im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
142 |
+
# im_mask = (im_gpu * 255).byte().cpu().numpy()
|
143 |
+
# self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
|
144 |
+
# if self.pil:
|
145 |
+
# # convert im back to PIL and update draw
|
146 |
+
# self.fromarray(self.im)
|
147 |
+
|
148 |
+
def rectangle(self, xy, fill=None, outline=None, width=1):
|
149 |
+
# Add rectangle to image (PIL-only)
|
150 |
+
self.draw.rectangle(xy, fill, outline, width)
|
151 |
+
|
152 |
+
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
|
153 |
+
# Add text to image (PIL-only)
|
154 |
+
if anchor == 'bottom': # start y from font bottom
|
155 |
+
w, h = self.font.getsize(text) # text width, height
|
156 |
+
xy[1] += 1 - h
|
157 |
+
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
158 |
+
|
159 |
+
def fromarray(self, im):
|
160 |
+
# Update self.im from a numpy array
|
161 |
+
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
162 |
+
self.draw = ImageDraw.Draw(self.im)
|
163 |
+
|
164 |
+
def result(self):
|
165 |
+
# Return annotated image as array
|
166 |
+
return np.asarray(self.im)
|
167 |
+
|
168 |
+
|
169 |
+
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
|
170 |
+
"""
|
171 |
+
x: Features to be visualized
|
172 |
+
module_type: Module type
|
173 |
+
stage: Module stage within model
|
174 |
+
n: Maximum number of feature maps to plot
|
175 |
+
save_dir: Directory to save results
|
176 |
+
"""
|
177 |
+
if 'Detect' not in module_type:
|
178 |
+
batch, channels, height, width = x.shape # batch, channels, height, width
|
179 |
+
if height > 1 and width > 1:
|
180 |
+
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
181 |
+
|
182 |
+
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
183 |
+
n = min(n, channels) # number of plots
|
184 |
+
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
185 |
+
ax = ax.ravel()
|
186 |
+
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
187 |
+
for i in range(n):
|
188 |
+
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
189 |
+
ax[i].axis('off')
|
190 |
+
|
191 |
+
LOGGER.info(f'Saving {f}... ({n}/{channels})')
|
192 |
+
plt.savefig(f, dpi=300, bbox_inches='tight')
|
193 |
+
plt.close()
|
194 |
+
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
|
195 |
+
|
196 |
+
|
197 |
+
def hist2d(x, y, n=100):
|
198 |
+
# 2d histogram used in labels.png and evolve.png
|
199 |
+
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
200 |
+
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
201 |
+
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
202 |
+
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
203 |
+
return np.log(hist[xidx, yidx])
|
204 |
+
|
205 |
+
|
206 |
+
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
207 |
+
from scipy.signal import butter, filtfilt
|
208 |
+
|
209 |
+
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
210 |
+
def butter_lowpass(cutoff, fs, order):
|
211 |
+
nyq = 0.5 * fs
|
212 |
+
normal_cutoff = cutoff / nyq
|
213 |
+
return butter(order, normal_cutoff, btype='low', analog=False)
|
214 |
+
|
215 |
+
b, a = butter_lowpass(cutoff, fs, order=order)
|
216 |
+
return filtfilt(b, a, data) # forward-backward filter
|
217 |
+
|
218 |
+
|
219 |
+
def output_to_target(output, max_det=300):
|
220 |
+
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
|
221 |
+
targets = []
|
222 |
+
for i, o in enumerate(output):
|
223 |
+
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
|
224 |
+
j = torch.full((conf.shape[0], 1), i)
|
225 |
+
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
|
226 |
+
return torch.cat(targets, 0).numpy()
|
227 |
+
|
228 |
+
|
229 |
+
@threaded
|
230 |
+
def plot_images(images, targets, paths=None, fname='images.jpg', names=None):
|
231 |
+
# Plot image grid with labels
|
232 |
+
if isinstance(images, torch.Tensor):
|
233 |
+
images = images.cpu().float().numpy()
|
234 |
+
if isinstance(targets, torch.Tensor):
|
235 |
+
targets = targets.cpu().numpy()
|
236 |
+
|
237 |
+
max_size = 1920 # max image size
|
238 |
+
max_subplots = 16 # max image subplots, i.e. 4x4
|
239 |
+
bs, _, h, w = images.shape # batch size, _, height, width
|
240 |
+
bs = min(bs, max_subplots) # limit plot images
|
241 |
+
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
242 |
+
if np.max(images[0]) <= 1:
|
243 |
+
images *= 255 # de-normalise (optional)
|
244 |
+
|
245 |
+
# Build Image
|
246 |
+
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
247 |
+
for i, im in enumerate(images):
|
248 |
+
if i == max_subplots: # if last batch has fewer images than we expect
|
249 |
+
break
|
250 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
251 |
+
im = im.transpose(1, 2, 0)
|
252 |
+
mosaic[y:y + h, x:x + w, :] = im
|
253 |
+
|
254 |
+
# Resize (optional)
|
255 |
+
scale = max_size / ns / max(h, w)
|
256 |
+
if scale < 1:
|
257 |
+
h = math.ceil(scale * h)
|
258 |
+
w = math.ceil(scale * w)
|
259 |
+
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
260 |
+
|
261 |
+
# Annotate
|
262 |
+
fs = int((h + w) * ns * 0.01) # font size
|
263 |
+
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
264 |
+
for i in range(i + 1):
|
265 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
266 |
+
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
267 |
+
if paths:
|
268 |
+
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
269 |
+
if len(targets) > 0:
|
270 |
+
ti = targets[targets[:, 0] == i] # image targets
|
271 |
+
boxes = xywh2xyxy(ti[:, 2:6]).T
|
272 |
+
classes = ti[:, 1].astype('int')
|
273 |
+
labels = ti.shape[1] == 6 # labels if no conf column
|
274 |
+
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
|
275 |
+
|
276 |
+
if boxes.shape[1]:
|
277 |
+
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
278 |
+
boxes[[0, 2]] *= w # scale to pixels
|
279 |
+
boxes[[1, 3]] *= h
|
280 |
+
elif scale < 1: # absolute coords need scale if image scales
|
281 |
+
boxes *= scale
|
282 |
+
boxes[[0, 2]] += x
|
283 |
+
boxes[[1, 3]] += y
|
284 |
+
for j, box in enumerate(boxes.T.tolist()):
|
285 |
+
cls = classes[j]
|
286 |
+
color = colors(cls)
|
287 |
+
cls = names[cls] if names else cls
|
288 |
+
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
289 |
+
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
|
290 |
+
annotator.box_label(box, label, color=color)
|
291 |
+
annotator.im.save(fname) # save
|
292 |
+
|
293 |
+
|
294 |
+
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
295 |
+
# Plot LR simulating training for full epochs
|
296 |
+
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
297 |
+
y = []
|
298 |
+
for _ in range(epochs):
|
299 |
+
scheduler.step()
|
300 |
+
y.append(optimizer.param_groups[0]['lr'])
|
301 |
+
plt.plot(y, '.-', label='LR')
|
302 |
+
plt.xlabel('epoch')
|
303 |
+
plt.ylabel('LR')
|
304 |
+
plt.grid()
|
305 |
+
plt.xlim(0, epochs)
|
306 |
+
plt.ylim(0)
|
307 |
+
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
308 |
+
plt.close()
|
309 |
+
|
310 |
+
|
311 |
+
def plot_val_txt(): # from utils.plots import *; plot_val()
|
312 |
+
# Plot val.txt histograms
|
313 |
+
x = np.loadtxt('val.txt', dtype=np.float32)
|
314 |
+
box = xyxy2xywh(x[:, :4])
|
315 |
+
cx, cy = box[:, 0], box[:, 1]
|
316 |
+
|
317 |
+
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
318 |
+
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
319 |
+
ax.set_aspect('equal')
|
320 |
+
plt.savefig('hist2d.png', dpi=300)
|
321 |
+
|
322 |
+
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
323 |
+
ax[0].hist(cx, bins=600)
|
324 |
+
ax[1].hist(cy, bins=600)
|
325 |
+
plt.savefig('hist1d.png', dpi=200)
|
326 |
+
|
327 |
+
|
328 |
+
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
329 |
+
# Plot targets.txt histograms
|
330 |
+
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
331 |
+
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
332 |
+
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
333 |
+
ax = ax.ravel()
|
334 |
+
for i in range(4):
|
335 |
+
ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
|
336 |
+
ax[i].legend()
|
337 |
+
ax[i].set_title(s[i])
|
338 |
+
plt.savefig('targets.jpg', dpi=200)
|
339 |
+
|
340 |
+
|
341 |
+
def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
|
342 |
+
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
|
343 |
+
save_dir = Path(file).parent if file else Path(dir)
|
344 |
+
plot2 = False # plot additional results
|
345 |
+
if plot2:
|
346 |
+
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
|
347 |
+
|
348 |
+
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
349 |
+
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
|
350 |
+
for f in sorted(save_dir.glob('study*.txt')):
|
351 |
+
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
352 |
+
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
353 |
+
if plot2:
|
354 |
+
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
|
355 |
+
for i in range(7):
|
356 |
+
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
357 |
+
ax[i].set_title(s[i])
|
358 |
+
|
359 |
+
j = y[3].argmax() + 1
|
360 |
+
ax2.plot(y[5, 1:j],
|
361 |
+
y[3, 1:j] * 1E2,
|
362 |
+
'.-',
|
363 |
+
linewidth=2,
|
364 |
+
markersize=8,
|
365 |
+
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
366 |
+
|
367 |
+
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
368 |
+
'k.-',
|
369 |
+
linewidth=2,
|
370 |
+
markersize=8,
|
371 |
+
alpha=.25,
|
372 |
+
label='EfficientDet')
|
373 |
+
|
374 |
+
ax2.grid(alpha=0.2)
|
375 |
+
ax2.set_yticks(np.arange(20, 60, 5))
|
376 |
+
ax2.set_xlim(0, 57)
|
377 |
+
ax2.set_ylim(25, 55)
|
378 |
+
ax2.set_xlabel('GPU Speed (ms/img)')
|
379 |
+
ax2.set_ylabel('COCO AP val')
|
380 |
+
ax2.legend(loc='lower right')
|
381 |
+
f = save_dir / 'study.png'
|
382 |
+
print(f'Saving {f}...')
|
383 |
+
plt.savefig(f, dpi=300)
|
384 |
+
|
385 |
+
|
386 |
+
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
|
387 |
+
def plot_labels(labels, names=(), save_dir=Path('')):
|
388 |
+
# plot dataset labels
|
389 |
+
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
|
390 |
+
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
391 |
+
nc = int(c.max() + 1) # number of classes
|
392 |
+
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
393 |
+
|
394 |
+
# seaborn correlogram
|
395 |
+
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
396 |
+
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
397 |
+
plt.close()
|
398 |
+
|
399 |
+
# matplotlib labels
|
400 |
+
matplotlib.use('svg') # faster
|
401 |
+
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
402 |
+
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
403 |
+
with contextlib.suppress(Exception): # color histogram bars by class
|
404 |
+
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
|
405 |
+
ax[0].set_ylabel('instances')
|
406 |
+
if 0 < len(names) < 30:
|
407 |
+
ax[0].set_xticks(range(len(names)))
|
408 |
+
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
|
409 |
+
else:
|
410 |
+
ax[0].set_xlabel('classes')
|
411 |
+
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
412 |
+
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
413 |
+
|
414 |
+
# rectangles
|
415 |
+
labels[:, 1:3] = 0.5 # center
|
416 |
+
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
417 |
+
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
418 |
+
for cls, *box in labels[:1000]:
|
419 |
+
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
|
420 |
+
ax[1].imshow(img)
|
421 |
+
ax[1].axis('off')
|
422 |
+
|
423 |
+
for a in [0, 1, 2, 3]:
|
424 |
+
for s in ['top', 'right', 'left', 'bottom']:
|
425 |
+
ax[a].spines[s].set_visible(False)
|
426 |
+
|
427 |
+
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
428 |
+
matplotlib.use('Agg')
|
429 |
+
plt.close()
|
430 |
+
|
431 |
+
|
432 |
+
def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')):
|
433 |
+
# Show classification image grid with labels (optional) and predictions (optional)
|
434 |
+
from utils.augmentations import denormalize
|
435 |
+
|
436 |
+
names = names or [f'class{i}' for i in range(1000)]
|
437 |
+
blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im),
|
438 |
+
dim=0) # select batch index 0, block by channels
|
439 |
+
n = min(len(blocks), nmax) # number of plots
|
440 |
+
m = min(8, round(n ** 0.5)) # 8 x 8 default
|
441 |
+
fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols
|
442 |
+
ax = ax.ravel() if m > 1 else [ax]
|
443 |
+
# plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
444 |
+
for i in range(n):
|
445 |
+
ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
|
446 |
+
ax[i].axis('off')
|
447 |
+
if labels is not None:
|
448 |
+
s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '')
|
449 |
+
ax[i].set_title(s, fontsize=8, verticalalignment='top')
|
450 |
+
plt.savefig(f, dpi=300, bbox_inches='tight')
|
451 |
+
plt.close()
|
452 |
+
if verbose:
|
453 |
+
LOGGER.info(f"Saving {f}")
|
454 |
+
if labels is not None:
|
455 |
+
LOGGER.info('True: ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax]))
|
456 |
+
if pred is not None:
|
457 |
+
LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax]))
|
458 |
+
return f
|
459 |
+
|
460 |
+
|
461 |
+
def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
|
462 |
+
# Plot evolve.csv hyp evolution results
|
463 |
+
evolve_csv = Path(evolve_csv)
|
464 |
+
data = pd.read_csv(evolve_csv)
|
465 |
+
keys = [x.strip() for x in data.columns]
|
466 |
+
x = data.values
|
467 |
+
f = fitness(x)
|
468 |
+
j = np.argmax(f) # max fitness index
|
469 |
+
plt.figure(figsize=(10, 12), tight_layout=True)
|
470 |
+
matplotlib.rc('font', **{'size': 8})
|
471 |
+
print(f'Best results from row {j} of {evolve_csv}:')
|
472 |
+
for i, k in enumerate(keys[7:]):
|
473 |
+
v = x[:, 7 + i]
|
474 |
+
mu = v[j] # best single result
|
475 |
+
plt.subplot(6, 5, i + 1)
|
476 |
+
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
477 |
+
plt.plot(mu, f.max(), 'k+', markersize=15)
|
478 |
+
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
|
479 |
+
if i % 5 != 0:
|
480 |
+
plt.yticks([])
|
481 |
+
print(f'{k:>15}: {mu:.3g}')
|
482 |
+
f = evolve_csv.with_suffix('.png') # filename
|
483 |
+
plt.savefig(f, dpi=200)
|
484 |
+
plt.close()
|
485 |
+
print(f'Saved {f}')
|
486 |
+
|
487 |
+
|
488 |
+
def plot_results(file='path/to/results.csv', dir=''):
|
489 |
+
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
490 |
+
save_dir = Path(file).parent if file else Path(dir)
|
491 |
+
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
492 |
+
ax = ax.ravel()
|
493 |
+
files = list(save_dir.glob('results*.csv'))
|
494 |
+
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
495 |
+
for f in files:
|
496 |
+
try:
|
497 |
+
data = pd.read_csv(f)
|
498 |
+
s = [x.strip() for x in data.columns]
|
499 |
+
x = data.values[:, 0]
|
500 |
+
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
|
501 |
+
y = data.values[:, j].astype('float')
|
502 |
+
# y[y == 0] = np.nan # don't show zero values
|
503 |
+
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
|
504 |
+
ax[i].set_title(s[j], fontsize=12)
|
505 |
+
# if j in [8, 9, 10]: # share train and val loss y axes
|
506 |
+
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
507 |
+
except Exception as e:
|
508 |
+
LOGGER.info(f'Warning: Plotting error for {f}: {e}')
|
509 |
+
ax[1].legend()
|
510 |
+
fig.savefig(save_dir / 'results.png', dpi=200)
|
511 |
+
plt.close()
|
512 |
+
|
513 |
+
|
514 |
+
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
515 |
+
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
516 |
+
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
517 |
+
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
518 |
+
files = list(Path(save_dir).glob('frames*.txt'))
|
519 |
+
for fi, f in enumerate(files):
|
520 |
+
try:
|
521 |
+
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
522 |
+
n = results.shape[1] # number of rows
|
523 |
+
x = np.arange(start, min(stop, n) if stop else n)
|
524 |
+
results = results[:, x]
|
525 |
+
t = (results[0] - results[0].min()) # set t0=0s
|
526 |
+
results[0] = x
|
527 |
+
for i, a in enumerate(ax):
|
528 |
+
if i < len(results):
|
529 |
+
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
530 |
+
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
531 |
+
a.set_title(s[i])
|
532 |
+
a.set_xlabel('time (s)')
|
533 |
+
# if fi == len(files) - 1:
|
534 |
+
# a.set_ylim(bottom=0)
|
535 |
+
for side in ['top', 'right']:
|
536 |
+
a.spines[side].set_visible(False)
|
537 |
+
else:
|
538 |
+
a.remove()
|
539 |
+
except Exception as e:
|
540 |
+
print(f'Warning: Plotting error for {f}; {e}')
|
541 |
+
ax[1].legend()
|
542 |
+
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
543 |
+
|
544 |
+
|
545 |
+
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
|
546 |
+
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
|
547 |
+
xyxy = torch.tensor(xyxy).view(-1, 4)
|
548 |
+
b = xyxy2xywh(xyxy) # boxes
|
549 |
+
if square:
|
550 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
|
551 |
+
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
|
552 |
+
xyxy = xywh2xyxy(b).long()
|
553 |
+
clip_boxes(xyxy, im.shape)
|
554 |
+
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
|
555 |
+
if save:
|
556 |
+
file.parent.mkdir(parents=True, exist_ok=True) # make directory
|
557 |
+
f = str(increment_path(file).with_suffix('.jpg'))
|
558 |
+
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
|
559 |
+
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
|
560 |
+
return crop
|
utils/torch_utils.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
PyTorch utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import platform
|
9 |
+
import subprocess
|
10 |
+
import time
|
11 |
+
import warnings
|
12 |
+
from contextlib import contextmanager
|
13 |
+
from copy import deepcopy
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.distributed as dist
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
21 |
+
|
22 |
+
from utils.general import LOGGER, check_version, colorstr, file_date, git_describe
|
23 |
+
|
24 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
25 |
+
RANK = int(os.getenv('RANK', -1))
|
26 |
+
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
27 |
+
|
28 |
+
try:
|
29 |
+
import thop # for FLOPs computation
|
30 |
+
except ImportError:
|
31 |
+
thop = None
|
32 |
+
|
33 |
+
# Suppress PyTorch warnings
|
34 |
+
warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
|
35 |
+
warnings.filterwarnings('ignore', category=UserWarning)
|
36 |
+
|
37 |
+
|
38 |
+
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
|
39 |
+
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
|
40 |
+
def decorate(fn):
|
41 |
+
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
|
42 |
+
|
43 |
+
return decorate
|
44 |
+
|
45 |
+
|
46 |
+
def smartCrossEntropyLoss(label_smoothing=0.0):
|
47 |
+
# Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0
|
48 |
+
if check_version(torch.__version__, '1.10.0'):
|
49 |
+
return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
|
50 |
+
if label_smoothing > 0:
|
51 |
+
LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0')
|
52 |
+
return nn.CrossEntropyLoss()
|
53 |
+
|
54 |
+
|
55 |
+
def smart_DDP(model):
|
56 |
+
# Model DDP creation with checks
|
57 |
+
assert not check_version(torch.__version__, '1.12.0', pinned=True), \
|
58 |
+
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
|
59 |
+
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
|
60 |
+
if check_version(torch.__version__, '1.11.0'):
|
61 |
+
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
|
62 |
+
else:
|
63 |
+
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
64 |
+
|
65 |
+
|
66 |
+
def reshape_classifier_output(model, n=1000):
|
67 |
+
# Update a TorchVision classification model to class count 'n' if required
|
68 |
+
from models.common import Classify
|
69 |
+
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
70 |
+
if isinstance(m, Classify): # YOLOv5 Classify() head
|
71 |
+
if m.linear.out_features != n:
|
72 |
+
m.linear = nn.Linear(m.linear.in_features, n)
|
73 |
+
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
|
74 |
+
if m.out_features != n:
|
75 |
+
setattr(model, name, nn.Linear(m.in_features, n))
|
76 |
+
elif isinstance(m, nn.Sequential):
|
77 |
+
types = [type(x) for x in m]
|
78 |
+
if nn.Linear in types:
|
79 |
+
i = types.index(nn.Linear) # nn.Linear index
|
80 |
+
if m[i].out_features != n:
|
81 |
+
m[i] = nn.Linear(m[i].in_features, n)
|
82 |
+
elif nn.Conv2d in types:
|
83 |
+
i = types.index(nn.Conv2d) # nn.Conv2d index
|
84 |
+
if m[i].out_channels != n:
|
85 |
+
m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
|
86 |
+
|
87 |
+
|
88 |
+
@contextmanager
|
89 |
+
def torch_distributed_zero_first(local_rank: int):
|
90 |
+
# Decorator to make all processes in distributed training wait for each local_master to do something
|
91 |
+
if local_rank not in [-1, 0]:
|
92 |
+
dist.barrier(device_ids=[local_rank])
|
93 |
+
yield
|
94 |
+
if local_rank == 0:
|
95 |
+
dist.barrier(device_ids=[0])
|
96 |
+
|
97 |
+
|
98 |
+
def device_count():
|
99 |
+
# Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
|
100 |
+
assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
|
101 |
+
try:
|
102 |
+
cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows
|
103 |
+
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
|
104 |
+
except Exception:
|
105 |
+
return 0
|
106 |
+
|
107 |
+
|
108 |
+
def select_device(device='', batch_size=0, newline=True):
|
109 |
+
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
110 |
+
s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
|
111 |
+
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
|
112 |
+
cpu = device == 'cpu'
|
113 |
+
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
|
114 |
+
if cpu or mps:
|
115 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
116 |
+
elif device: # non-cpu device requested
|
117 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
118 |
+
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
119 |
+
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
120 |
+
|
121 |
+
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
122 |
+
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
123 |
+
n = len(devices) # device count
|
124 |
+
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
|
125 |
+
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
126 |
+
space = ' ' * (len(s) + 1)
|
127 |
+
for i, d in enumerate(devices):
|
128 |
+
p = torch.cuda.get_device_properties(i)
|
129 |
+
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
|
130 |
+
arg = 'cuda:0'
|
131 |
+
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
|
132 |
+
s += 'MPS\n'
|
133 |
+
arg = 'mps'
|
134 |
+
else: # revert to CPU
|
135 |
+
s += 'CPU\n'
|
136 |
+
arg = 'cpu'
|
137 |
+
|
138 |
+
if not newline:
|
139 |
+
s = s.rstrip()
|
140 |
+
LOGGER.info(s)
|
141 |
+
return torch.device(arg)
|
142 |
+
|
143 |
+
|
144 |
+
def time_sync():
|
145 |
+
# PyTorch-accurate time
|
146 |
+
if torch.cuda.is_available():
|
147 |
+
torch.cuda.synchronize()
|
148 |
+
return time.time()
|
149 |
+
|
150 |
+
|
151 |
+
def profile(input, ops, n=10, device=None):
|
152 |
+
""" YOLOv5 speed/memory/FLOPs profiler
|
153 |
+
Usage:
|
154 |
+
input = torch.randn(16, 3, 640, 640)
|
155 |
+
m1 = lambda x: x * torch.sigmoid(x)
|
156 |
+
m2 = nn.SiLU()
|
157 |
+
profile(input, [m1, m2], n=100) # profile over 100 iterations
|
158 |
+
"""
|
159 |
+
results = []
|
160 |
+
if not isinstance(device, torch.device):
|
161 |
+
device = select_device(device)
|
162 |
+
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
|
163 |
+
f"{'input':>24s}{'output':>24s}")
|
164 |
+
|
165 |
+
for x in input if isinstance(input, list) else [input]:
|
166 |
+
x = x.to(device)
|
167 |
+
x.requires_grad = True
|
168 |
+
for m in ops if isinstance(ops, list) else [ops]:
|
169 |
+
m = m.to(device) if hasattr(m, 'to') else m # device
|
170 |
+
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
171 |
+
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
172 |
+
try:
|
173 |
+
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
|
174 |
+
except Exception:
|
175 |
+
flops = 0
|
176 |
+
|
177 |
+
try:
|
178 |
+
for _ in range(n):
|
179 |
+
t[0] = time_sync()
|
180 |
+
y = m(x)
|
181 |
+
t[1] = time_sync()
|
182 |
+
try:
|
183 |
+
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
|
184 |
+
t[2] = time_sync()
|
185 |
+
except Exception: # no backward method
|
186 |
+
# print(e) # for debug
|
187 |
+
t[2] = float('nan')
|
188 |
+
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
189 |
+
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
190 |
+
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
|
191 |
+
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
|
192 |
+
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
|
193 |
+
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
194 |
+
results.append([p, flops, mem, tf, tb, s_in, s_out])
|
195 |
+
except Exception as e:
|
196 |
+
print(e)
|
197 |
+
results.append(None)
|
198 |
+
torch.cuda.empty_cache()
|
199 |
+
return results
|
200 |
+
|
201 |
+
|
202 |
+
def is_parallel(model):
|
203 |
+
# Returns True if model is of type DP or DDP
|
204 |
+
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
205 |
+
|
206 |
+
|
207 |
+
def de_parallel(model):
|
208 |
+
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
209 |
+
return model.module if is_parallel(model) else model
|
210 |
+
|
211 |
+
|
212 |
+
def initialize_weights(model):
|
213 |
+
for m in model.modules():
|
214 |
+
t = type(m)
|
215 |
+
if t is nn.Conv2d:
|
216 |
+
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
217 |
+
elif t is nn.BatchNorm2d:
|
218 |
+
m.eps = 1e-3
|
219 |
+
m.momentum = 0.03
|
220 |
+
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
221 |
+
m.inplace = True
|
222 |
+
|
223 |
+
|
224 |
+
def find_modules(model, mclass=nn.Conv2d):
|
225 |
+
# Finds layer indices matching module class 'mclass'
|
226 |
+
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
227 |
+
|
228 |
+
|
229 |
+
def sparsity(model):
|
230 |
+
# Return global model sparsity
|
231 |
+
a, b = 0, 0
|
232 |
+
for p in model.parameters():
|
233 |
+
a += p.numel()
|
234 |
+
b += (p == 0).sum()
|
235 |
+
return b / a
|
236 |
+
|
237 |
+
|
238 |
+
def prune(model, amount=0.3):
|
239 |
+
# Prune model to requested global sparsity
|
240 |
+
import torch.nn.utils.prune as prune
|
241 |
+
for name, m in model.named_modules():
|
242 |
+
if isinstance(m, nn.Conv2d):
|
243 |
+
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
244 |
+
prune.remove(m, 'weight') # make permanent
|
245 |
+
LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity')
|
246 |
+
|
247 |
+
|
248 |
+
def fuse_conv_and_bn(conv, bn):
|
249 |
+
# Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
250 |
+
fusedconv = nn.Conv2d(conv.in_channels,
|
251 |
+
conv.out_channels,
|
252 |
+
kernel_size=conv.kernel_size,
|
253 |
+
stride=conv.stride,
|
254 |
+
padding=conv.padding,
|
255 |
+
dilation=conv.dilation,
|
256 |
+
groups=conv.groups,
|
257 |
+
bias=True).requires_grad_(False).to(conv.weight.device)
|
258 |
+
|
259 |
+
# Prepare filters
|
260 |
+
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
261 |
+
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
262 |
+
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
263 |
+
|
264 |
+
# Prepare spatial bias
|
265 |
+
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
266 |
+
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
267 |
+
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
268 |
+
|
269 |
+
return fusedconv
|
270 |
+
|
271 |
+
|
272 |
+
def model_info(model, verbose=False, imgsz=640):
|
273 |
+
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
274 |
+
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
275 |
+
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
276 |
+
if verbose:
|
277 |
+
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
|
278 |
+
for i, (name, p) in enumerate(model.named_parameters()):
|
279 |
+
name = name.replace('module_list.', '')
|
280 |
+
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
281 |
+
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
282 |
+
|
283 |
+
try: # FLOPs
|
284 |
+
p = next(model.parameters())
|
285 |
+
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
|
286 |
+
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
|
287 |
+
flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
|
288 |
+
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
|
289 |
+
fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs
|
290 |
+
except Exception:
|
291 |
+
fs = ''
|
292 |
+
|
293 |
+
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
|
294 |
+
LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
295 |
+
|
296 |
+
|
297 |
+
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
298 |
+
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
299 |
+
if ratio == 1.0:
|
300 |
+
return img
|
301 |
+
h, w = img.shape[2:]
|
302 |
+
s = (int(h * ratio), int(w * ratio)) # new size
|
303 |
+
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
304 |
+
if not same_shape: # pad/crop img
|
305 |
+
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
|
306 |
+
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
307 |
+
|
308 |
+
|
309 |
+
def copy_attr(a, b, include=(), exclude=()):
|
310 |
+
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
311 |
+
for k, v in b.__dict__.items():
|
312 |
+
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
313 |
+
continue
|
314 |
+
else:
|
315 |
+
setattr(a, k, v)
|
316 |
+
|
317 |
+
|
318 |
+
def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
|
319 |
+
# YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
|
320 |
+
g = [], [], [] # optimizer parameter groups
|
321 |
+
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
|
322 |
+
for v in model.modules():
|
323 |
+
for p_name, p in v.named_parameters(recurse=0):
|
324 |
+
if p_name == 'bias': # bias (no decay)
|
325 |
+
g[2].append(p)
|
326 |
+
elif p_name == 'weight' and isinstance(v, bn): # weight (no decay)
|
327 |
+
g[1].append(p)
|
328 |
+
else:
|
329 |
+
g[0].append(p) # weight (with decay)
|
330 |
+
|
331 |
+
if name == 'Adam':
|
332 |
+
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum
|
333 |
+
elif name == 'AdamW':
|
334 |
+
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
|
335 |
+
elif name == 'RMSProp':
|
336 |
+
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
|
337 |
+
elif name == 'SGD':
|
338 |
+
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
|
339 |
+
else:
|
340 |
+
raise NotImplementedError(f'Optimizer {name} not implemented.')
|
341 |
+
|
342 |
+
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
|
343 |
+
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
|
344 |
+
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
|
345 |
+
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
|
346 |
+
return optimizer
|
347 |
+
|
348 |
+
|
349 |
+
def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs):
|
350 |
+
# YOLOv5 torch.hub.load() wrapper with smart error/issue handling
|
351 |
+
if check_version(torch.__version__, '1.9.1'):
|
352 |
+
kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors
|
353 |
+
if check_version(torch.__version__, '1.12.0'):
|
354 |
+
kwargs['trust_repo'] = True # argument required starting in torch 0.12
|
355 |
+
try:
|
356 |
+
return torch.hub.load(repo, model, **kwargs)
|
357 |
+
except Exception:
|
358 |
+
return torch.hub.load(repo, model, force_reload=True, **kwargs)
|
359 |
+
|
360 |
+
|
361 |
+
def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True):
|
362 |
+
# Resume training from a partially trained checkpoint
|
363 |
+
best_fitness = 0.0
|
364 |
+
start_epoch = ckpt['epoch'] + 1
|
365 |
+
if ckpt['optimizer'] is not None:
|
366 |
+
optimizer.load_state_dict(ckpt['optimizer']) # optimizer
|
367 |
+
best_fitness = ckpt['best_fitness']
|
368 |
+
if ema and ckpt.get('ema'):
|
369 |
+
ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
|
370 |
+
ema.updates = ckpt['updates']
|
371 |
+
if resume:
|
372 |
+
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \
|
373 |
+
f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
|
374 |
+
LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs')
|
375 |
+
if epochs < start_epoch:
|
376 |
+
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
|
377 |
+
epochs += ckpt['epoch'] # finetune additional epochs
|
378 |
+
return best_fitness, start_epoch, epochs
|
379 |
+
|
380 |
+
|
381 |
+
class EarlyStopping:
|
382 |
+
# YOLOv5 simple early stopper
|
383 |
+
def __init__(self, patience=30):
|
384 |
+
self.best_fitness = 0.0 # i.e. mAP
|
385 |
+
self.best_epoch = 0
|
386 |
+
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
|
387 |
+
self.possible_stop = False # possible stop may occur next epoch
|
388 |
+
|
389 |
+
def __call__(self, epoch, fitness):
|
390 |
+
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
|
391 |
+
self.best_epoch = epoch
|
392 |
+
self.best_fitness = fitness
|
393 |
+
delta = epoch - self.best_epoch # epochs without improvement
|
394 |
+
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
|
395 |
+
stop = delta >= self.patience # stop training if patience exceeded
|
396 |
+
if stop:
|
397 |
+
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
|
398 |
+
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
|
399 |
+
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
|
400 |
+
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
|
401 |
+
return stop
|
402 |
+
|
403 |
+
|
404 |
+
class ModelEMA:
|
405 |
+
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
|
406 |
+
Keeps a moving average of everything in the model state_dict (parameters and buffers)
|
407 |
+
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
408 |
+
"""
|
409 |
+
|
410 |
+
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
411 |
+
# Create EMA
|
412 |
+
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
|
413 |
+
self.updates = updates # number of EMA updates
|
414 |
+
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
|
415 |
+
for p in self.ema.parameters():
|
416 |
+
p.requires_grad_(False)
|
417 |
+
|
418 |
+
def update(self, model):
|
419 |
+
# Update EMA parameters
|
420 |
+
self.updates += 1
|
421 |
+
d = self.decay(self.updates)
|
422 |
+
|
423 |
+
msd = de_parallel(model).state_dict() # model state_dict
|
424 |
+
for k, v in self.ema.state_dict().items():
|
425 |
+
if v.dtype.is_floating_point: # true for FP16 and FP32
|
426 |
+
v *= d
|
427 |
+
v += (1 - d) * msd[k].detach()
|
428 |
+
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
|
429 |
+
|
430 |
+
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
431 |
+
# Update EMA attributes
|
432 |
+
copy_attr(self.ema, model, include, exclude)
|