pushpinder08 commited on
Commit
1d39365
1 Parent(s): 295ecc7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -149
app.py CHANGED
@@ -1,151 +1,66 @@
1
- from pathlib import Path
2
- from typing import List, Dict, Tuple
3
- import matplotlib.colors as mpl_colors
4
-
5
- import pandas as pd
6
- import seaborn as sns
7
- import shinyswatch
8
-
9
- from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
10
-
11
- sns.set_theme()
12
-
13
- www_dir = Path(__file__).parent.resolve() / "www"
14
-
15
- df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
16
- numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
17
- species: List[str] = df["Species"].unique().tolist()
18
- species.sort()
19
-
20
- app_ui = ui.page_fillable(
21
- shinyswatch.theme.minty(),
22
- ui.layout_sidebar(
23
- ui.sidebar(
24
- # Artwork by @allison_horst
25
- ui.input_selectize(
26
- "xvar",
27
- "X variable",
28
- numeric_cols,
29
- selected="Bill Length (mm)",
30
- ),
31
- ui.input_selectize(
32
- "yvar",
33
- "Y variable",
34
- numeric_cols,
35
- selected="Bill Depth (mm)",
36
- ),
37
- ui.input_checkbox_group(
38
- "species", "Filter by species", species, selected=species
39
- ),
40
- ui.hr(),
41
- ui.input_switch("by_species", "Show species", value=True),
42
- ui.input_switch("show_margins", "Show marginal plots", value=True),
43
- ),
44
- ui.output_ui("value_boxes"),
45
- ui.output_plot("scatter", fill=True),
46
- ui.help_text(
47
- "Artwork by ",
48
- ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
49
- class_="text-end",
50
- ),
51
- ),
52
- )
53
-
54
-
55
- def server(input: Inputs, output: Outputs, session: Session):
56
- @reactive.Calc
57
- def filtered_df() -> pd.DataFrame:
58
- """Returns a Pandas data frame that includes only the desired rows"""
59
-
60
- # This calculation "req"uires that at least one species is selected
61
- req(len(input.species()) > 0)
62
-
63
- # Filter the rows so we only include the desired species
64
- return df[df["Species"].isin(input.species())]
65
-
66
- @output
67
- @render.plot
68
- def scatter():
69
- """Generates a plot for Shiny to display to the user"""
70
-
71
- # The plotting function to use depends on whether margins are desired
72
- plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
73
-
74
- plotfunc(
75
- data=filtered_df(),
76
- x=input.xvar(),
77
- y=input.yvar(),
78
- palette=palette,
79
- hue="Species" if input.by_species() else None,
80
- hue_order=species,
81
- legend=False,
82
  )
83
-
84
- @output
85
- @render.ui
86
- def value_boxes():
87
- df = filtered_df()
88
-
89
- def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
90
- return ui.value_box(
91
- title,
92
- count,
93
- {"class_": "pt-1 pb-0"},
94
- showcase=ui.fill.as_fill_item(
95
- ui.tags.img(
96
- {"style": "object-fit:contain;"},
97
- src=showcase_img,
98
- )
99
- ),
100
- theme_color=None,
101
- style=f"background-color: {bgcol};",
102
- )
103
-
104
- if not input.by_species():
105
- return penguin_value_box(
106
- "Penguins",
107
- len(df.index),
108
- bg_palette["default"],
109
- # Artwork by @allison_horst
110
- showcase_img="penguins.png",
111
- )
112
-
113
- value_boxes = [
114
- penguin_value_box(
115
- name,
116
- len(df[df["Species"] == name]),
117
- bg_palette[name],
118
- # Artwork by @allison_horst
119
- showcase_img=f"{name}.png",
120
- )
121
- for name in species
122
- # Only include boxes for _selected_ species
123
- if name in input.species()
124
- ]
125
-
126
- return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
127
-
128
-
129
- # "darkorange", "purple", "cyan4"
130
- colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
131
- colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
132
-
133
- palette: Dict[str, Tuple[float, float, float]] = {
134
- "Adelie": colors[0],
135
- "Chinstrap": colors[1],
136
- "Gentoo": colors[2],
137
- "default": sns.color_palette()[0], # type: ignore
138
- }
139
-
140
- bg_palette = {}
141
- # Use `sns.set_style("whitegrid")` to help find approx alpha value
142
- for name, col in palette.items():
143
- # Adjusted n_colors until `axe` accessibility did not complain about color contrast
144
- bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
145
-
146
-
147
- app = App(
148
- app_ui,
149
- server,
150
- static_assets=str(www_dir),
151
  )
 
 
 
1
+ import os
2
+
3
+ # Set environment variables to address warnings
4
+ os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib-config'
5
+ os.environ['XDG_CACHE_HOME'] = '/tmp/fontconfig-cache'
6
+
7
+ import gradio as gr
8
+ from transformers import BertTokenizer, BertModel, BertPreTrainedModel
9
+ import torch
10
+ from torch import nn
11
+
12
+ class CustomBertForSequenceClassification(BertPreTrainedModel):
13
+ def __init__(self, config):
14
+ super().__init__(config)
15
+ self.bert = BertModel(config)
16
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
17
+ self.fc_positive = nn.Linear(config.hidden_size, 1)
18
+ self.fc_neutral = nn.Linear(config.hidden_size, 1)
19
+ self.fc_negative = nn.Linear(config.hidden_size, 1)
20
+
21
+ self.init_weights()
22
+
23
+ def forward(self, input_ids, attention_mask=None, token_type_ids=None):
24
+ outputs = self.bert(
25
+ input_ids,
26
+ attention_mask=attention_mask,
27
+ token_type_ids=token_type_ids,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  )
29
+ pooled_output = outputs[1]
30
+ pooled_output = self.dropout(pooled_output)
31
+
32
+ logits_positive = self.fc_positive(pooled_output)
33
+ logits_neutral = self.fc_neutral(pooled_output)
34
+ logits_negative = self.fc_negative(pooled_output)
35
+
36
+ logits = torch.cat([logits_positive, logits_neutral, logits_negative], dim=-1)
37
+ return logits
38
+
39
+ # Load the tokenizer
40
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
41
+
42
+ # Load the model with the trained weights
43
+ model = CustomBertForSequenceClassification.from_pretrained('bert-base-uncased')
44
+ model.load_state_dict(torch.load('bert_classifier.pth', map_location=torch.device('cpu')))
45
+ model.eval()
46
+
47
+ # Define the class labels
48
+ class_labels = ["No Surprise", "Positive Surprise", "Negative Surprise"]
49
+
50
+ def classify_text(text):
51
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
52
+ with torch.no_grad():
53
+ outputs = model(**inputs)
54
+ logits = outputs
55
+ prediction = torch.argmax(logits, dim=1).item()
56
+ return class_labels[prediction]
57
+
58
+ iface = gr.Interface(
59
+ fn=classify_text,
60
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
61
+ outputs="label",
62
+ title="BERT Classifier for Surprises",
63
+ description="Enter text to classify it as a positive surprise, negative surprise, or no surprise",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  )
65
+
66
+ iface.launch()