Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
# Load model
|
| 6 |
+
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
| 7 |
+
|
| 8 |
+
# Inference function
|
| 9 |
+
def generate_caption(image):
|
| 10 |
+
result = captioner(image)
|
| 11 |
+
return result[0]["generated_text"]
|
| 12 |
+
|
| 13 |
+
# Gradio UI
|
| 14 |
+
iface = gr.Interface(
|
| 15 |
+
fn=generate_caption,
|
| 16 |
+
inputs=gr.Image(type="pil"),
|
| 17 |
+
outputs="text",
|
| 18 |
+
title="🖼️ Image Caption Generator",
|
| 19 |
+
description="Upload an image and the model will describe it in a sentence.",
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
iface.launch()
|