pushpikaLiyanagama
commited on
Commit
•
82af12a
1
Parent(s):
4f46130
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,36 @@
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import joblib
|
3 |
-
import json
|
4 |
-
from typing import List, Dict
|
5 |
|
6 |
-
|
7 |
-
scaler = joblib.load('scaler.joblib')
|
8 |
models = {
|
9 |
-
"processing": joblib.load(
|
10 |
-
"perception": joblib.load(
|
11 |
-
"input": joblib.load(
|
12 |
-
"understanding": joblib.load(
|
13 |
}
|
14 |
|
15 |
-
# Define the prediction function
|
16 |
-
def predict(features: List[float]) -> Dict[str, float]:
|
17 |
-
"""
|
18 |
-
Predict outcomes for all target variables based on input features.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
features (List[float]): A list of 12 numeric features in the correct order.
|
22 |
-
|
23 |
-
Returns:
|
24 |
-
Dict[str, float]: A dictionary with predictions for each target variable.
|
25 |
-
"""
|
26 |
-
# Ensure the input is a NumPy array
|
27 |
-
input_array = np.array(features).reshape(1, -1)
|
28 |
-
|
29 |
-
# Scale the input
|
30 |
-
scaled_input = scaler.transform(input_array)
|
31 |
-
|
32 |
-
# Predict outcomes
|
33 |
-
predictions = {}
|
34 |
-
for target, model in models.items():
|
35 |
-
predictions[target] = model.predict(scaled_input)[0] # Get single prediction
|
36 |
-
|
37 |
-
return predictions
|
38 |
-
|
39 |
-
# Define a callable class for Hugging Face
|
40 |
class Model:
|
41 |
def __init__(self):
|
42 |
self.scaler = scaler
|
43 |
self.models = models
|
44 |
|
45 |
def __call__(self, inputs: List[List[float]]) -> List[Dict[str, float]]:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
Returns:
|
53 |
-
List[Dict[str, float]]: A list of predictions for each input.
|
54 |
-
"""
|
55 |
outputs = []
|
56 |
for features in inputs:
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
outputs.append(predictions)
|
59 |
return outputs
|
60 |
|
61 |
-
|
62 |
-
# Instantiate the model
|
63 |
model = Model()
|
64 |
-
|
65 |
-
# Hugging Face Inference API expects `model` to be callable
|
66 |
-
if __name__ == "__main__":
|
67 |
-
# For local testing or debugging
|
68 |
-
test_input = [
|
69 |
-
[0.5, 1.0, 0.0, 1.0, 0.5, 0.0, 1.0, 0.5, 1.0, 0.0, 0.0, 0.5] # Example input
|
70 |
-
]
|
71 |
-
output = model(test_input)
|
72 |
-
print(json.dumps(output, indent=4))
|
73 |
-
|
|
|
1 |
+
from typing import List, Dict
|
2 |
+
import pandas as pd
|
3 |
import numpy as np
|
4 |
import joblib
|
|
|
|
|
5 |
|
6 |
+
scaler = joblib.load("scaler.joblib")
|
|
|
7 |
models = {
|
8 |
+
"processing": joblib.load("svm_model_processing.joblib"),
|
9 |
+
"perception": joblib.load("svm_model_perception.joblib"),
|
10 |
+
"input": joblib.load("svm_model_input.joblib"),
|
11 |
+
"understanding": joblib.load("svm_model_understanding.joblib"),
|
12 |
}
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class Model:
|
15 |
def __init__(self):
|
16 |
self.scaler = scaler
|
17 |
self.models = models
|
18 |
|
19 |
def __call__(self, inputs: List[List[float]]) -> List[Dict[str, float]]:
|
20 |
+
feature_names = [
|
21 |
+
"course overview", "reading file", "abstract materiale",
|
22 |
+
"concrete material", "visual materials", "self-assessment",
|
23 |
+
"exercises submit", "quiz submitted", "playing", "paused",
|
24 |
+
"unstarted", "buffering"
|
25 |
+
]
|
|
|
|
|
|
|
26 |
outputs = []
|
27 |
for features in inputs:
|
28 |
+
input_df = pd.DataFrame([features], columns=feature_names)
|
29 |
+
scaled_input = self.scaler.transform(input_df)
|
30 |
+
predictions = {}
|
31 |
+
for target, model in self.models.items():
|
32 |
+
predictions[target] = model.predict(scaled_input)[0]
|
33 |
outputs.append(predictions)
|
34 |
return outputs
|
35 |
|
|
|
|
|
36 |
model = Model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|