|
import spaces
|
|
import gradio as gr
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
import spacy
|
|
|
|
class ModelSingleton:
|
|
_instance = None
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
if not cls._instance:
|
|
cls._instance = super(ModelSingleton, cls).__new__(cls, *args, **kwargs)
|
|
return cls._instance
|
|
|
|
def __init__(self):
|
|
if not hasattr(self, 'initialized'):
|
|
self.nlp_en = spacy.load("en_core_web_sm")
|
|
self.nlp_it = spacy.load("it_core_news_sm")
|
|
|
|
|
|
self.tokenizer_en_it = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it")
|
|
self.model_en_it = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it")
|
|
|
|
self.tokenizer_it_en = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en")
|
|
self.model_it_en = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en")
|
|
|
|
self.initialized = True
|
|
|
|
model_singleton = ModelSingleton()
|
|
|
|
@spaces.GPU(duration=30)
|
|
def generate_response_en_it(input_text):
|
|
input_ids = model_singleton.tokenizer_en_it("translate English to Italian: " + input_text, return_tensors="pt").input_ids
|
|
output = model_singleton.model_en_it.generate(input_ids, max_new_tokens=256)
|
|
return model_singleton.tokenizer_en_it.decode(output[0], skip_special_tokens=True)
|
|
|
|
@spaces.GPU(duration=30)
|
|
def generate_response_it_en(input_text):
|
|
input_ids = model_singleton.tokenizer_it_en("translate Italian to English: " + input_text, return_tensors="pt").input_ids
|
|
output = model_singleton.model_it_en.generate(input_ids, max_new_tokens=256)
|
|
return model_singleton.tokenizer_it_en.decode(output[0], skip_special_tokens=True)
|
|
|
|
def translate_text(input_text, direction):
|
|
if direction == "en-it":
|
|
nlp = model_singleton.nlp_en
|
|
generate_response = generate_response_en_it
|
|
elif direction == "it-en":
|
|
nlp = model_singleton.nlp_it
|
|
generate_response = generate_response_it_en
|
|
else:
|
|
return "Invalid direction selected."
|
|
|
|
doc = nlp(input_text)
|
|
sentences = [sent.text for sent in doc.sents]
|
|
|
|
sentence_translations = []
|
|
for sentence in sentences:
|
|
sentence_translation = generate_response(sentence)
|
|
sentence_translations.append(sentence_translation)
|
|
|
|
full_translation = " ".join(sentence_translations)
|
|
return full_translation
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=translate_text,
|
|
inputs=[gr.Textbox(lines=5, placeholder="Enter text to translate..."),
|
|
gr.Dropdown(choices=["en-it", "it-en"], label="Translation Direction")], label="Input Text",
|
|
outputs=gr.Textbox(lines=5, label="Translation"),
|
|
description="This space is running on ZERO GPU. Initilization might take a couple of seconds the first time. This spaces uses the Quadrifoglio models for it-en and en-it text translation tasks."
|
|
)
|
|
|
|
|
|
iface.launch()
|
|
|
|
|