Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Peter
commited on
Commit
•
afa6ede
1
Parent(s):
8dbbc84
:art: apply formatting
Browse files- app.py +9 -5
- summarize.py +3 -1
app.py
CHANGED
@@ -128,9 +128,7 @@ if __name__ == "__main__":
|
|
128 |
|
129 |
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
|
130 |
title = "Long-Form Summarization: LED & BookSum"
|
131 |
-
description = (
|
132 |
-
"A simple demo of how to use a fine-tuned LED model to summarize long-form text. [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
133 |
-
)
|
134 |
|
135 |
gr.Interface(
|
136 |
proc_submission,
|
@@ -140,7 +138,11 @@ if __name__ == "__main__":
|
|
140 |
minimum=1, maximum=6, label="num_beams", default=4, step=1
|
141 |
),
|
142 |
gr.inputs.Slider(
|
143 |
-
minimum=512,
|
|
|
|
|
|
|
|
|
144 |
),
|
145 |
gr.inputs.Slider(
|
146 |
minimum=0.5, maximum=1.1, label="length_penalty", default=0.7, step=0.05
|
@@ -163,4 +165,6 @@ if __name__ == "__main__":
|
|
163 |
article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.",
|
164 |
examples=load_examples(),
|
165 |
cache_examples=False,
|
166 |
-
).launch(
|
|
|
|
|
|
128 |
|
129 |
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
|
130 |
title = "Long-Form Summarization: LED & BookSum"
|
131 |
+
description = "A simple demo of how to use a fine-tuned LED model to summarize long-form text. [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
|
|
|
|
132 |
|
133 |
gr.Interface(
|
134 |
proc_submission,
|
|
|
138 |
minimum=1, maximum=6, label="num_beams", default=4, step=1
|
139 |
),
|
140 |
gr.inputs.Slider(
|
141 |
+
minimum=512,
|
142 |
+
maximum=2048,
|
143 |
+
label="token_batch_length",
|
144 |
+
default=1024,
|
145 |
+
step=512,
|
146 |
),
|
147 |
gr.inputs.Slider(
|
148 |
minimum=0.5, maximum=1.1, label="length_penalty", default=0.7, step=0.05
|
|
|
165 |
article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.",
|
166 |
examples=load_examples(),
|
167 |
cache_examples=False,
|
168 |
+
).launch(
|
169 |
+
enable_queue=True,
|
170 |
+
)
|
summarize.py
CHANGED
@@ -93,7 +93,9 @@ def summarize_via_tokenbatches(
|
|
93 |
if batch_length < 512:
|
94 |
batch_length = 512
|
95 |
print("WARNING: batch_length was set to 512")
|
96 |
-
print(
|
|
|
|
|
97 |
encoded_input = tokenizer(
|
98 |
input_text,
|
99 |
padding="max_length",
|
|
|
93 |
if batch_length < 512:
|
94 |
batch_length = 512
|
95 |
print("WARNING: batch_length was set to 512")
|
96 |
+
print(
|
97 |
+
f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}"
|
98 |
+
)
|
99 |
encoded_input = tokenizer(
|
100 |
input_text,
|
101 |
padding="max_length",
|