Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
✨ mai improvements
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
- app.py +99 -41
- requirements.txt +2 -2
- summarize.py +36 -22
- utils.py +14 -0
app.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import random
|
3 |
import re
|
@@ -6,6 +10,7 @@ from pathlib import Path
|
|
6 |
|
7 |
import gradio as gr
|
8 |
import nltk
|
|
|
9 |
from cleantext import clean
|
10 |
|
11 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
@@ -13,22 +18,62 @@ from utils import load_example_filenames, truncate_word_count
|
|
13 |
|
14 |
_here = Path(__file__).parent
|
15 |
|
16 |
-
nltk.download("stopwords"
|
17 |
|
18 |
logging.basicConfig(
|
19 |
-
level=logging.INFO, format="%(asctime)s - %(levelname)s
|
20 |
)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def proc_submission(
|
24 |
input_text: str,
|
25 |
-
|
26 |
-
num_beams,
|
27 |
-
token_batch_length,
|
28 |
-
length_penalty,
|
29 |
-
repetition_penalty,
|
30 |
-
no_repeat_ngram_size,
|
31 |
-
max_input_length: int =
|
32 |
):
|
33 |
"""
|
34 |
proc_submission - a helper function for the gradio module to process submissions
|
@@ -41,12 +86,14 @@ def proc_submission(
|
|
41 |
length_penalty (float): the length penalty to use
|
42 |
repetition_penalty (float): the repetition penalty to use
|
43 |
no_repeat_ngram_size (int): the no-repeat ngram size to use
|
44 |
-
max_input_length (int, optional): the maximum input length to use. Defaults to
|
45 |
|
46 |
Returns:
|
47 |
str in HTML format, string of the summary, str of score
|
48 |
"""
|
49 |
|
|
|
|
|
50 |
settings = {
|
51 |
"length_penalty": float(length_penalty),
|
52 |
"repetition_penalty": float(repetition_penalty),
|
@@ -58,14 +105,19 @@ def proc_submission(
|
|
58 |
"early_stopping": True,
|
59 |
"do_sample": False,
|
60 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
st = time.perf_counter()
|
62 |
history = {}
|
63 |
clean_text = clean(input_text, lower=False)
|
64 |
-
max_input_length = 2048 if model_size == "base" else max_input_length
|
65 |
processed = truncate_word_count(clean_text, max_input_length)
|
66 |
|
67 |
if processed["was_truncated"]:
|
68 |
-
|
69 |
# create elaborate HTML warning
|
70 |
input_wc = re.split(r"\s+", input_text)
|
71 |
msg = f"""
|
@@ -77,7 +129,7 @@ def proc_submission(
|
|
77 |
logging.warning(msg)
|
78 |
history["WARNING"] = msg
|
79 |
else:
|
80 |
-
|
81 |
msg = None
|
82 |
|
83 |
if len(input_text) < 50:
|
@@ -95,24 +147,25 @@ def proc_submission(
|
|
95 |
|
96 |
return msg, "", []
|
97 |
|
98 |
-
_summaries =
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
batch_length=token_batch_length,
|
103 |
**settings,
|
104 |
)
|
105 |
-
sum_text = [
|
|
|
|
|
106 |
sum_scores = [
|
107 |
-
f"
|
108 |
-
for i, s in enumerate(_summaries)
|
109 |
]
|
110 |
|
111 |
sum_text_out = "\n".join(sum_text)
|
112 |
history["Summary Scores"] = "<br><br>"
|
113 |
scores_out = "\n".join(sum_scores)
|
114 |
rt = round((time.perf_counter() - st) / 60, 2)
|
115 |
-
|
116 |
html = ""
|
117 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
118 |
if msg is not None:
|
@@ -169,36 +222,38 @@ def load_uploaded_file(file_obj):
|
|
169 |
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
-
|
173 |
-
|
174 |
-
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
|
175 |
-
|
176 |
name_to_path = load_example_filenames(_here / "examples")
|
177 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
178 |
-
demo = gr.Blocks(
|
|
|
|
|
179 |
_examples = list(name_to_path.keys())
|
180 |
with demo:
|
181 |
-
|
182 |
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
183 |
gr.Markdown(
|
184 |
"LED models ([model card](https://huggingface.co/pszemraj/led-large-book-summary)) fine-tuned to summarize long-form text. A [space with other models can be found here](https://huggingface.co/spaces/pszemraj/document-summarization)"
|
185 |
)
|
186 |
with gr.Column():
|
187 |
-
|
188 |
gr.Markdown("## Load Inputs & Select Parameters")
|
189 |
gr.Markdown(
|
190 |
"Enter or upload text below, and it will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). "
|
191 |
)
|
192 |
with gr.Row():
|
193 |
-
|
194 |
-
choices=
|
|
|
|
|
195 |
)
|
196 |
num_beams = gr.Radio(
|
197 |
choices=[2, 3, 4],
|
198 |
label="Beam Search: # of Beams",
|
199 |
value=2,
|
200 |
)
|
201 |
-
gr.Markdown(
|
|
|
|
|
202 |
with gr.Row():
|
203 |
example_name = gr.Dropdown(
|
204 |
_examples,
|
@@ -213,7 +268,8 @@ if __name__ == "__main__":
|
|
213 |
with gr.Row():
|
214 |
input_text = gr.Textbox(
|
215 |
lines=4,
|
216 |
-
|
|
|
217 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
218 |
)
|
219 |
with gr.Column():
|
@@ -250,11 +306,11 @@ if __name__ == "__main__":
|
|
250 |
with gr.Column():
|
251 |
gr.Markdown("### Advanced Settings")
|
252 |
with gr.Row():
|
253 |
-
length_penalty = gr.
|
254 |
minimum=0.5,
|
255 |
maximum=1.0,
|
256 |
label="length penalty",
|
257 |
-
|
258 |
step=0.05,
|
259 |
)
|
260 |
token_batch_length = gr.Radio(
|
@@ -264,11 +320,11 @@ if __name__ == "__main__":
|
|
264 |
)
|
265 |
|
266 |
with gr.Row():
|
267 |
-
repetition_penalty = gr.
|
268 |
minimum=1.0,
|
269 |
maximum=5.0,
|
270 |
label="repetition penalty",
|
271 |
-
|
272 |
step=0.1,
|
273 |
)
|
274 |
no_repeat_ngram_size = gr.Radio(
|
@@ -282,10 +338,10 @@ if __name__ == "__main__":
|
|
282 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
283 |
)
|
284 |
gr.Markdown(
|
285 |
-
"- The
|
286 |
)
|
287 |
gr.Markdown(
|
288 |
-
"-
|
289 |
)
|
290 |
gr.Markdown("---")
|
291 |
|
@@ -301,7 +357,7 @@ if __name__ == "__main__":
|
|
301 |
fn=proc_submission,
|
302 |
inputs=[
|
303 |
input_text,
|
304 |
-
|
305 |
num_beams,
|
306 |
token_batch_length,
|
307 |
length_penalty,
|
@@ -311,4 +367,6 @@ if __name__ == "__main__":
|
|
311 |
outputs=[output_text, summary_text, summary_scores],
|
312 |
)
|
313 |
|
314 |
-
demo.launch(
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
app.py - the main application file for the gradio app
|
3 |
+
"""
|
4 |
+
import gc
|
5 |
import logging
|
6 |
import random
|
7 |
import re
|
|
|
10 |
|
11 |
import gradio as gr
|
12 |
import nltk
|
13 |
+
import torch
|
14 |
from cleantext import clean
|
15 |
|
16 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
|
|
18 |
|
19 |
_here = Path(__file__).parent
|
20 |
|
21 |
+
nltk.download("stopwords", quiet=True)
|
22 |
|
23 |
logging.basicConfig(
|
24 |
+
level=logging.INFO, format="%(asctime)s - [%(levelname)s] %(name)s: %(message)s"
|
25 |
)
|
26 |
|
27 |
+
MODEL_OPTIONS = [
|
28 |
+
"pszemraj/led-large-book-summary",
|
29 |
+
"pszemraj/led-large-book-summary-continued",
|
30 |
+
"pszemraj/led-base-book-summary",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def predict(
|
35 |
+
input_text: str,
|
36 |
+
model_name: str,
|
37 |
+
token_batch_length: int = 2048,
|
38 |
+
empty_cache: bool = True,
|
39 |
+
**settings,
|
40 |
+
) -> list:
|
41 |
+
"""
|
42 |
+
predict - helper fn to support multiple models for summarization at once
|
43 |
+
:param str input_text: the input text to summarize
|
44 |
+
:param str model_name: model name to use
|
45 |
+
:param int token_batch_length: the length of the token batches to use
|
46 |
+
:param bool empty_cache: whether to empty the cache before loading a new= model
|
47 |
+
:return: list of dicts with keys "summary" and "score"
|
48 |
+
"""
|
49 |
+
if torch.cuda.is_available() and empty_cache:
|
50 |
+
torch.cuda.empty_cache()
|
51 |
+
|
52 |
+
model, tokenizer = load_model_and_tokenizer(model_name)
|
53 |
+
summaries = summarize_via_tokenbatches(
|
54 |
+
input_text,
|
55 |
+
model,
|
56 |
+
tokenizer,
|
57 |
+
batch_length=token_batch_length,
|
58 |
+
**settings,
|
59 |
+
)
|
60 |
+
|
61 |
+
del model
|
62 |
+
del tokenizer
|
63 |
+
gc.collect()
|
64 |
+
|
65 |
+
return summaries
|
66 |
+
|
67 |
|
68 |
def proc_submission(
|
69 |
input_text: str,
|
70 |
+
model_name: str,
|
71 |
+
num_beams: int,
|
72 |
+
token_batch_length: int,
|
73 |
+
length_penalty: float,
|
74 |
+
repetition_penalty: float,
|
75 |
+
no_repeat_ngram_size: int,
|
76 |
+
max_input_length: int = 2560,
|
77 |
):
|
78 |
"""
|
79 |
proc_submission - a helper function for the gradio module to process submissions
|
|
|
86 |
length_penalty (float): the length penalty to use
|
87 |
repetition_penalty (float): the repetition penalty to use
|
88 |
no_repeat_ngram_size (int): the no-repeat ngram size to use
|
89 |
+
max_input_length (int, optional): the maximum input length to use. Defaults to 2560.
|
90 |
|
91 |
Returns:
|
92 |
str in HTML format, string of the summary, str of score
|
93 |
"""
|
94 |
|
95 |
+
logger = logging.getLogger(__name__)
|
96 |
+
logger.info("Processing submission")
|
97 |
settings = {
|
98 |
"length_penalty": float(length_penalty),
|
99 |
"repetition_penalty": float(repetition_penalty),
|
|
|
105 |
"early_stopping": True,
|
106 |
"do_sample": False,
|
107 |
}
|
108 |
+
|
109 |
+
if "base" in model_name:
|
110 |
+
logger.info("Updating max_input_length to for base model")
|
111 |
+
max_input_length = 4096
|
112 |
+
|
113 |
+
logger.info(f"max_input_length: {max_input_length}")
|
114 |
st = time.perf_counter()
|
115 |
history = {}
|
116 |
clean_text = clean(input_text, lower=False)
|
|
|
117 |
processed = truncate_word_count(clean_text, max_input_length)
|
118 |
|
119 |
if processed["was_truncated"]:
|
120 |
+
truncated_input = processed["truncated_text"]
|
121 |
# create elaborate HTML warning
|
122 |
input_wc = re.split(r"\s+", input_text)
|
123 |
msg = f"""
|
|
|
129 |
logging.warning(msg)
|
130 |
history["WARNING"] = msg
|
131 |
else:
|
132 |
+
truncated_input = input_text
|
133 |
msg = None
|
134 |
|
135 |
if len(input_text) < 50:
|
|
|
147 |
|
148 |
return msg, "", []
|
149 |
|
150 |
+
_summaries = predict(
|
151 |
+
input_text=truncated_input,
|
152 |
+
model_name=model_name,
|
153 |
+
token_batch_length=token_batch_length,
|
|
|
154 |
**settings,
|
155 |
)
|
156 |
+
sum_text = [
|
157 |
+
f"\nBatch {i}:\n\t" + s["summary"][0] for i, s in enumerate(_summaries, start=1)
|
158 |
+
]
|
159 |
sum_scores = [
|
160 |
+
f"\n- Batch {i}:\n\t{round(s['summary_score'],4)}"
|
161 |
+
for i, s in enumerate(_summaries, start=1)
|
162 |
]
|
163 |
|
164 |
sum_text_out = "\n".join(sum_text)
|
165 |
history["Summary Scores"] = "<br><br>"
|
166 |
scores_out = "\n".join(sum_scores)
|
167 |
rt = round((time.perf_counter() - st) / 60, 2)
|
168 |
+
logger.info(f"Runtime: {rt} minutes")
|
169 |
html = ""
|
170 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
171 |
if msg is not None:
|
|
|
222 |
|
223 |
|
224 |
if __name__ == "__main__":
|
225 |
+
logger = logging.getLogger(__name__)
|
226 |
+
logger.info("Starting up app")
|
|
|
|
|
227 |
name_to_path = load_example_filenames(_here / "examples")
|
228 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
229 |
+
demo = gr.Blocks(
|
230 |
+
title="Summarize Long-Form Text",
|
231 |
+
)
|
232 |
_examples = list(name_to_path.keys())
|
233 |
with demo:
|
|
|
234 |
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
235 |
gr.Markdown(
|
236 |
"LED models ([model card](https://huggingface.co/pszemraj/led-large-book-summary)) fine-tuned to summarize long-form text. A [space with other models can be found here](https://huggingface.co/spaces/pszemraj/document-summarization)"
|
237 |
)
|
238 |
with gr.Column():
|
|
|
239 |
gr.Markdown("## Load Inputs & Select Parameters")
|
240 |
gr.Markdown(
|
241 |
"Enter or upload text below, and it will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). "
|
242 |
)
|
243 |
with gr.Row():
|
244 |
+
model_name = gr.Dropdown(
|
245 |
+
choices=MODEL_OPTIONS,
|
246 |
+
value=MODEL_OPTIONS[0],
|
247 |
+
label="Model Name",
|
248 |
)
|
249 |
num_beams = gr.Radio(
|
250 |
choices=[2, 3, 4],
|
251 |
label="Beam Search: # of Beams",
|
252 |
value=2,
|
253 |
)
|
254 |
+
gr.Markdown(
|
255 |
+
"Load a a .txt - example or your own (_You may find [this OCR space](https://huggingface.co/spaces/pszemraj/pdf-ocr) useful_)"
|
256 |
+
)
|
257 |
with gr.Row():
|
258 |
example_name = gr.Dropdown(
|
259 |
_examples,
|
|
|
268 |
with gr.Row():
|
269 |
input_text = gr.Textbox(
|
270 |
lines=4,
|
271 |
+
max_lines=12,
|
272 |
+
label="Text to Summarize",
|
273 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
274 |
)
|
275 |
with gr.Column():
|
|
|
306 |
with gr.Column():
|
307 |
gr.Markdown("### Advanced Settings")
|
308 |
with gr.Row():
|
309 |
+
length_penalty = gr.Slider(
|
310 |
minimum=0.5,
|
311 |
maximum=1.0,
|
312 |
label="length penalty",
|
313 |
+
value=0.7,
|
314 |
step=0.05,
|
315 |
)
|
316 |
token_batch_length = gr.Radio(
|
|
|
320 |
)
|
321 |
|
322 |
with gr.Row():
|
323 |
+
repetition_penalty = gr.Slider(
|
324 |
minimum=1.0,
|
325 |
maximum=5.0,
|
326 |
label="repetition penalty",
|
327 |
+
value=3.5,
|
328 |
step=0.1,
|
329 |
)
|
330 |
no_repeat_ngram_size = gr.Radio(
|
|
|
338 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
339 |
)
|
340 |
gr.Markdown(
|
341 |
+
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a Colab notebook for a tutorial."
|
342 |
)
|
343 |
gr.Markdown(
|
344 |
+
"- **Update May 1, 2023:** Enabled faster inference times via `use_cache=True`, the number of words the model will processed has been increased! New [test model](https://huggingface.co/pszemraj/led-large-book-summary-continued) as an extension of `led-large-book-summary`."
|
345 |
)
|
346 |
gr.Markdown("---")
|
347 |
|
|
|
357 |
fn=proc_submission,
|
358 |
inputs=[
|
359 |
input_text,
|
360 |
+
model_name,
|
361 |
num_beams,
|
362 |
token_batch_length,
|
363 |
length_penalty,
|
|
|
367 |
outputs=[output_text, summary_text, summary_scores],
|
368 |
)
|
369 |
|
370 |
+
demo.launch(
|
371 |
+
enable_queue=True,
|
372 |
+
)
|
requirements.txt
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
clean-text
|
2 |
gradio
|
3 |
natsort
|
4 |
nltk
|
5 |
torch
|
6 |
tqdm
|
7 |
transformers
|
8 |
-
accelerate
|
|
|
1 |
+
clean-text
|
2 |
gradio
|
3 |
natsort
|
4 |
nltk
|
5 |
torch
|
6 |
tqdm
|
7 |
transformers
|
8 |
+
accelerate
|
summarize.py
CHANGED
@@ -1,30 +1,40 @@
|
|
1 |
import logging
|
|
|
2 |
|
|
|
|
|
|
|
3 |
import torch
|
4 |
from tqdm.auto import tqdm
|
5 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
|
7 |
|
8 |
-
def load_model_and_tokenizer(model_name):
|
9 |
"""
|
10 |
-
load_model_and_tokenizer - a
|
11 |
-
|
12 |
-
|
13 |
-
model_name (str): the name of the model to load
|
14 |
-
Returns:
|
15 |
-
AutoModelForSeq2SeqLM: the model
|
16 |
-
AutoTokenizer: the tokenizer
|
17 |
"""
|
18 |
-
|
|
|
19 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
20 |
model_name,
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
-
model = model.to("cuda") if torch.cuda.is_available() else model
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
return model, tokenizer
|
29 |
|
30 |
|
@@ -76,6 +86,7 @@ def summarize_via_tokenbatches(
|
|
76 |
tokenizer,
|
77 |
batch_length=2048,
|
78 |
batch_stride=16,
|
|
|
79 |
**kwargs,
|
80 |
):
|
81 |
"""
|
@@ -83,7 +94,7 @@ def summarize_via_tokenbatches(
|
|
83 |
|
84 |
Args:
|
85 |
input_text (str): the text to summarize
|
86 |
-
model (): the model to use for
|
87 |
tokenizer (): the tokenizer to use for summarization
|
88 |
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
89 |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
@@ -92,12 +103,16 @@ def summarize_via_tokenbatches(
|
|
92 |
str: the summary
|
93 |
"""
|
94 |
# log all input parameters
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
encoded_input = tokenizer(
|
102 |
input_text,
|
103 |
padding="max_length",
|
@@ -115,7 +130,6 @@ def summarize_via_tokenbatches(
|
|
115 |
pbar = tqdm(total=len(in_id_arr))
|
116 |
|
117 |
for _id, _mask in zip(in_id_arr, att_arr):
|
118 |
-
|
119 |
result, score = summarize_and_score(
|
120 |
ids=_id,
|
121 |
mask=_mask,
|
|
|
1 |
import logging
|
2 |
+
import pprint as pp
|
3 |
|
4 |
+
from utils import validate_pytorch2
|
5 |
+
|
6 |
+
logging.basicConfig(level=logging.INFO)
|
7 |
import torch
|
8 |
from tqdm.auto import tqdm
|
9 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
10 |
|
11 |
|
12 |
+
def load_model_and_tokenizer(model_name: str) -> tuple:
|
13 |
"""
|
14 |
+
load_model_and_tokenizer - load a model and tokenizer from a model name/ID on the hub
|
15 |
+
:param str model_name: the model name/ID on the hub
|
16 |
+
:return tuple: a tuple containing the model and tokenizer
|
|
|
|
|
|
|
|
|
17 |
"""
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
21 |
model_name,
|
22 |
+
).to(device)
|
23 |
+
model = model.eval()
|
24 |
+
|
25 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
26 |
|
27 |
+
logger.info(f"Loaded model {model_name} to {device}")
|
28 |
+
|
29 |
+
if validate_pytorch2():
|
30 |
+
try:
|
31 |
+
logger.info("Compiling model with Torch 2.0")
|
32 |
+
model = torch.compile(model)
|
33 |
+
except Exception as e:
|
34 |
+
logger.warning(f"Could not compile model with Torch 2.0: {e}")
|
35 |
+
else:
|
36 |
+
logger.info("Torch 2.0 not detected, skipping compilation")
|
37 |
+
|
38 |
return model, tokenizer
|
39 |
|
40 |
|
|
|
86 |
tokenizer,
|
87 |
batch_length=2048,
|
88 |
batch_stride=16,
|
89 |
+
min_batch_length: int = 512,
|
90 |
**kwargs,
|
91 |
):
|
92 |
"""
|
|
|
94 |
|
95 |
Args:
|
96 |
input_text (str): the text to summarize
|
97 |
+
model (): the model to use for summarization
|
98 |
tokenizer (): the tokenizer to use for summarization
|
99 |
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
100 |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
|
|
103 |
str: the summary
|
104 |
"""
|
105 |
# log all input parameters
|
106 |
+
logger = logging.getLogger(__name__)
|
107 |
+
# log all input parameters
|
108 |
+
if batch_length < min_batch_length:
|
109 |
+
logger.warning(
|
110 |
+
f"batch_length must be at least {min_batch_length}. Setting batch_length to {min_batch_length}"
|
111 |
+
)
|
112 |
+
batch_length = min_batch_length
|
113 |
+
|
114 |
+
logger.info(f"input parameters:\n{pp.pformat(kwargs)}")
|
115 |
+
logger.info(f"batch_length: {batch_length}, batch_stride: {batch_stride}")
|
116 |
encoded_input = tokenizer(
|
117 |
input_text,
|
118 |
padding="max_length",
|
|
|
130 |
pbar = tqdm(total=len(in_id_arr))
|
131 |
|
132 |
for _id, _mask in zip(in_id_arr, att_arr):
|
|
|
133 |
result, score = summarize_and_score(
|
134 |
ids=_id,
|
135 |
mask=_mask,
|
utils.py
CHANGED
@@ -2,12 +2,26 @@
|
|
2 |
utils.py - Utility functions for the project.
|
3 |
"""
|
4 |
|
|
|
5 |
import re
|
6 |
from pathlib import Path
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
from natsort import natsorted
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def truncate_word_count(text, max_words=512):
|
12 |
"""
|
13 |
truncate_word_count - a helper function for the gradio module
|
|
|
2 |
utils.py - Utility functions for the project.
|
3 |
"""
|
4 |
|
5 |
+
import logging
|
6 |
import re
|
7 |
from pathlib import Path
|
8 |
|
9 |
+
logging.basicConfig(
|
10 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
11 |
+
level=logging.INFO,
|
12 |
+
)
|
13 |
+
import torch
|
14 |
from natsort import natsorted
|
15 |
|
16 |
|
17 |
+
def validate_pytorch2(torch_version: str = None):
|
18 |
+
torch_version = torch.__version__ if torch_version is None else torch_version
|
19 |
+
|
20 |
+
pattern = r"^2\.\d+(\.\d+)*"
|
21 |
+
|
22 |
+
return True if re.match(pattern, torch_version) else False
|
23 |
+
|
24 |
+
|
25 |
def truncate_word_count(text, max_words=512):
|
26 |
"""
|
27 |
truncate_word_count - a helper function for the gradio module
|