Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Peter
commited on
Commit
·
01d78f2
1
Parent(s):
e1cbb91
:sparkles: update to blocks api
Browse files- app.py +125 -57
- requirements.txt +1 -0
- summarize.py +4 -2
- utils.py +15 -2
app.py
CHANGED
@@ -1,22 +1,21 @@
|
|
1 |
import logging
|
2 |
-
import re
|
3 |
-
from pathlib import Path
|
4 |
import time
|
|
|
|
|
5 |
import gradio as gr
|
6 |
import nltk
|
7 |
from cleantext import clean
|
8 |
|
9 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
10 |
-
from utils import
|
11 |
|
12 |
_here = Path(__file__).parent
|
13 |
|
14 |
nltk.download("stopwords") # TODO=find where this requirement originates from
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
logging.basicConfig()
|
20 |
|
21 |
|
22 |
def proc_submission(
|
@@ -56,6 +55,7 @@ def proc_submission(
|
|
56 |
clean_text = clean(input_text, lower=False)
|
57 |
max_input_length = 1024 if model_size == "base" else max_input_length
|
58 |
processed = truncate_word_count(clean_text, max_input_length)
|
|
|
59 |
if processed["was_truncated"]:
|
60 |
tr_in = processed["truncated_text"]
|
61 |
msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
|
@@ -63,6 +63,7 @@ def proc_submission(
|
|
63 |
history["WARNING"] = msg
|
64 |
else:
|
65 |
tr_in = input_text
|
|
|
66 |
|
67 |
_summaries = summarize_via_tokenbatches(
|
68 |
tr_in,
|
@@ -73,79 +74,146 @@ def proc_submission(
|
|
73 |
)
|
74 |
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
|
75 |
sum_scores = [
|
76 |
-
f"
|
77 |
for i, s in enumerate(_summaries)
|
78 |
]
|
79 |
|
80 |
-
|
81 |
-
history[
|
82 |
-
|
83 |
-
] = "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better.<br><br>"
|
84 |
-
history["Summary Scores"] += "\n".join(sum_scores)
|
85 |
-
html = ""
|
86 |
rt = round((time.perf_counter() - st) / 60, 2)
|
87 |
print(f"Runtime: {rt} minutes")
|
|
|
88 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
89 |
-
|
90 |
-
html +=
|
91 |
-
f"<h2>{name}:</h2><hr><b>{item}</b><br><br>"
|
92 |
-
if "summary" not in name.lower()
|
93 |
-
else f"<h2>{name}:</h2><hr>{item}<br><br>"
|
94 |
-
)
|
95 |
|
96 |
html += ""
|
97 |
|
98 |
-
return html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
|
103 |
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
|
104 |
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
choices=["base", "large"], label="model size", default="large"
|
119 |
-
)
|
120 |
-
gr.inputs.Slider(
|
121 |
minimum=2, maximum=4, label="num_beams", default=2, step=1
|
122 |
-
)
|
123 |
-
gr.inputs.Slider(
|
124 |
minimum=512,
|
125 |
maximum=1024,
|
126 |
label="token_batch_length",
|
127 |
default=512,
|
128 |
step=256,
|
129 |
-
)
|
130 |
-
gr.inputs.Slider(
|
131 |
-
minimum=0.5, maximum=1.
|
132 |
-
)
|
133 |
-
gr.inputs.Slider(
|
134 |
minimum=1.0,
|
135 |
maximum=5.0,
|
136 |
-
label="
|
137 |
default=3.5,
|
138 |
step=0.1,
|
139 |
-
)
|
140 |
-
gr.inputs.Slider(
|
141 |
-
minimum=2, maximum=4, label="
|
142 |
-
)
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
|
|
|
|
2 |
import time
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
import gradio as gr
|
6 |
import nltk
|
7 |
from cleantext import clean
|
8 |
|
9 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
10 |
+
from utils import load_example_filenames, truncate_word_count
|
11 |
|
12 |
_here = Path(__file__).parent
|
13 |
|
14 |
nltk.download("stopwords") # TODO=find where this requirement originates from
|
15 |
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
18 |
+
)
|
|
|
19 |
|
20 |
|
21 |
def proc_submission(
|
|
|
55 |
clean_text = clean(input_text, lower=False)
|
56 |
max_input_length = 1024 if model_size == "base" else max_input_length
|
57 |
processed = truncate_word_count(clean_text, max_input_length)
|
58 |
+
|
59 |
if processed["was_truncated"]:
|
60 |
tr_in = processed["truncated_text"]
|
61 |
msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
|
|
|
63 |
history["WARNING"] = msg
|
64 |
else:
|
65 |
tr_in = input_text
|
66 |
+
msg = None
|
67 |
|
68 |
_summaries = summarize_via_tokenbatches(
|
69 |
tr_in,
|
|
|
74 |
)
|
75 |
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
|
76 |
sum_scores = [
|
77 |
+
f" - Section {i}: {round(s['summary_score'],4)}"
|
78 |
for i, s in enumerate(_summaries)
|
79 |
]
|
80 |
|
81 |
+
sum_text_out = "\n".join(sum_text)
|
82 |
+
history["Summary Scores"] = "<br><br>"
|
83 |
+
scores_out = "\n".join(sum_scores)
|
|
|
|
|
|
|
84 |
rt = round((time.perf_counter() - st) / 60, 2)
|
85 |
print(f"Runtime: {rt} minutes")
|
86 |
+
html = ""
|
87 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
88 |
+
if msg is not None:
|
89 |
+
html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"
|
|
|
|
|
|
|
|
|
90 |
|
91 |
html += ""
|
92 |
|
93 |
+
return html, sum_text_out, scores_out
|
94 |
+
|
95 |
+
|
96 |
+
def load_single_example_text(
|
97 |
+
example_path: str or Path,
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
load_single_example - a helper function for the gradio module to load examples
|
101 |
+
Returns:
|
102 |
+
list of str, the examples
|
103 |
+
"""
|
104 |
+
global name_to_path
|
105 |
+
full_ex_path = name_to_path[example_path]
|
106 |
+
full_ex_path = Path(full_ex_path)
|
107 |
+
# load the examples into a list
|
108 |
+
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
|
109 |
+
raw_text = f.read()
|
110 |
+
text = clean(raw_text, lower=False)
|
111 |
+
return text
|
112 |
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
|
116 |
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
|
117 |
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
|
118 |
+
|
119 |
+
name_to_path = load_example_filenames(_here / "examples")
|
120 |
+
logging.info(f"Loaded {len(name_to_path)} examples")
|
121 |
+
demo = gr.Blocks()
|
122 |
+
|
123 |
+
with demo:
|
124 |
+
|
125 |
+
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
126 |
+
gr.Markdown(
|
127 |
+
"A simple demo using a fine-tuned LED model to summarize long-form text. See [model card](https://huggingface.co/pszemraj/led-large-book-summary) for a notebook with GPU inference (much faster) on Colab."
|
128 |
+
)
|
129 |
+
with gr.Column():
|
130 |
+
|
131 |
+
gr.Markdown("## Load Inputs & Select Parameters")
|
132 |
+
gr.Markdown(
|
133 |
+
"Enter your text below or choose an example, and select the model size and parameters. Press the button to load examples."
|
134 |
+
)
|
135 |
+
|
136 |
+
model_size = gr.inputs.Radio(
|
137 |
choices=["base", "large"], label="model size", default="large"
|
138 |
+
)
|
139 |
+
num_beams = gr.inputs.Slider(
|
140 |
minimum=2, maximum=4, label="num_beams", default=2, step=1
|
141 |
+
)
|
142 |
+
token_batch_length = gr.inputs.Slider(
|
143 |
minimum=512,
|
144 |
maximum=1024,
|
145 |
label="token_batch_length",
|
146 |
default=512,
|
147 |
step=256,
|
148 |
+
)
|
149 |
+
length_penalty = gr.inputs.Slider(
|
150 |
+
minimum=0.5, maximum=1.0, label="length penalty", default=0.7, step=0.05
|
151 |
+
)
|
152 |
+
repetition_penalty = gr.inputs.Slider(
|
153 |
minimum=1.0,
|
154 |
maximum=5.0,
|
155 |
+
label="repetition penalty",
|
156 |
default=3.5,
|
157 |
step=0.1,
|
158 |
+
)
|
159 |
+
no_repeat_ngram_size = gr.inputs.Slider(
|
160 |
+
minimum=2, maximum=4, label="no repeat ngram size", default=3, step=1
|
161 |
+
)
|
162 |
+
example_name = gr.Dropdown(
|
163 |
+
list(name_to_path.keys()),
|
164 |
+
label="Load Example",
|
165 |
+
)
|
166 |
+
load_examples_button = gr.Button(
|
167 |
+
"Load Example",
|
168 |
+
)
|
169 |
+
input_text = gr.Textbox(
|
170 |
+
lines=6,
|
171 |
+
label="input text",
|
172 |
+
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
173 |
+
)
|
174 |
+
|
175 |
+
with gr.Column():
|
176 |
+
gr.Markdown("## Generate Summary")
|
177 |
+
gr.Markdown("Summary generation should take approximately 1-2 minutes for most settings.")
|
178 |
+
summarize_button = gr.Button("Summarize!")
|
179 |
+
|
180 |
+
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
|
181 |
+
gr.Markdown("### Summary Output")
|
182 |
+
summary_text = gr.Textbox(
|
183 |
+
label="Summary", placeholder="The generated summary will appear here"
|
184 |
+
)
|
185 |
+
gr.Markdown(
|
186 |
+
"The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
|
187 |
+
)
|
188 |
+
summary_scores = gr.Textbox(
|
189 |
+
label="Summary Scores", placeholder="Summary scores will appear here"
|
190 |
+
)
|
191 |
+
|
192 |
+
with gr.Column():
|
193 |
+
gr.Markdown("## About the Model")
|
194 |
+
gr.Markdown(
|
195 |
+
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
196 |
+
)
|
197 |
+
gr.Markdown(
|
198 |
+
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
|
199 |
+
)
|
200 |
+
|
201 |
+
load_examples_button.click(
|
202 |
+
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
|
203 |
+
)
|
204 |
+
|
205 |
+
summarize_button.click(
|
206 |
+
fn=proc_submission,
|
207 |
+
inputs=[
|
208 |
+
input_text,
|
209 |
+
model_size,
|
210 |
+
num_beams,
|
211 |
+
token_batch_length,
|
212 |
+
length_penalty,
|
213 |
+
repetition_penalty,
|
214 |
+
no_repeat_ngram_size,
|
215 |
+
],
|
216 |
+
outputs=[output_text, summary_text, summary_scores],
|
217 |
+
)
|
218 |
+
|
219 |
+
demo.launch(enable_queue=True, prevent_thread_lock=True)
|
requirements.txt
CHANGED
@@ -5,3 +5,4 @@ nltk
|
|
5 |
torch
|
6 |
tqdm
|
7 |
transformers
|
|
|
|
5 |
torch
|
6 |
tqdm
|
7 |
transformers
|
8 |
+
accelerate
|
summarize.py
CHANGED
@@ -18,11 +18,13 @@ def load_model_and_tokenizer(model_name):
|
|
18 |
|
19 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
20 |
model_name,
|
21 |
-
low_cpu_mem_usage=True,
|
22 |
-
use_cache=False,
|
23 |
)
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
model = model.to("cuda") if torch.cuda.is_available() else model
|
|
|
|
|
26 |
return model, tokenizer
|
27 |
|
28 |
|
|
|
18 |
|
19 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
20 |
model_name,
|
21 |
+
# low_cpu_mem_usage=True,
|
22 |
+
# use_cache=False,
|
23 |
)
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
model = model.to("cuda") if torch.cuda.is_available() else model
|
26 |
+
|
27 |
+
logging.info(f"Loaded model {model_name}")
|
28 |
return model, tokenizer
|
29 |
|
30 |
|
utils.py
CHANGED
@@ -2,9 +2,10 @@
|
|
2 |
utils.py - Utility functions for the project.
|
3 |
"""
|
4 |
|
5 |
-
from natsort import natsorted
|
6 |
-
from pathlib import Path
|
7 |
import re
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def truncate_word_count(text, max_words=512):
|
@@ -48,3 +49,15 @@ def load_examples(src):
|
|
48 |
text_examples.append([text, "large", 2, 512, 0.7, 3.5, 3])
|
49 |
|
50 |
return text_examples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
utils.py - Utility functions for the project.
|
3 |
"""
|
4 |
|
|
|
|
|
5 |
import re
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
from natsort import natsorted
|
9 |
|
10 |
|
11 |
def truncate_word_count(text, max_words=512):
|
|
|
49 |
text_examples.append([text, "large", 2, 512, 0.7, 3.5, 3])
|
50 |
|
51 |
return text_examples
|
52 |
+
|
53 |
+
|
54 |
+
def load_example_filenames(example_path: str or Path):
|
55 |
+
"""
|
56 |
+
load_example_filenames - a helper function for the gradio module to load examples
|
57 |
+
Returns:
|
58 |
+
dict, the examples (filename:full path)
|
59 |
+
"""
|
60 |
+
example_path = Path(example_path)
|
61 |
+
# load the examples into a list
|
62 |
+
examples = {f.name: f for f in example_path.glob("*.txt")}
|
63 |
+
return examples
|