pszemraj commited on
Commit
b79b5bf
·
1 Parent(s): b3d99eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -2
app.py CHANGED
@@ -16,10 +16,16 @@ examples = [
16
  ]
17
 
18
  title = "InstructionGen: Instructions from Text"
19
- description = "This demo compares the [flan-t5-small-instructiongen](https://huggingface.co/pszemraj/flan-t5-small-instructiongen) and [bart-base-instructiongen](https://huggingface.co/pszemraj/bart-base-instructiongen) models on 'creating' an instruction for arbitrary text."
20
  article = """---
 
21
 
22
- These models generate instructions for Large Language Models (LLMs) from arbitrary text. They are fine-tuned on the [fleece2instructions](https://huggingface.co/datasets/pszemraj/fleece2instructions) dataset, which is a filtered/formatted version of the [alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) dataset."""
 
 
 
 
 
23
 
24
 
25
  def inference(text):
 
16
  ]
17
 
18
  title = "InstructionGen: Instructions from Text"
19
+ description = "This demo compares the [flan-t5-small-instructiongen](https://huggingface.co/pszemraj/flan-t5-small-instructiongen) and [bart-base-instructiongen](https://huggingface.co/pszemraj/bart-base-instructiongen) models on 'creating' an instruction for arbitrary text. Note that [the dataset](https://huggingface.co/datasets/pszemraj/fleece2instructions) & models are trained to **only** generate an `instruction`relevant to some text, and **do not** expect/recover the (potential) `inputs`"
20
  article = """---
21
+ These models generate instructions **only** for Large Language Models (LLMs) from arbitrary text. They are fine-tuned on the [fleece2instructions](https://huggingface.co/datasets/pszemraj/fleece2instructions) dataset, which is a filtered/formatted version of the [alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) dataset.
22
 
23
+ Example of the difference:
24
+ - LLM instruction: "What is the capital of France?"
25
+ - Instruction+specific inputs:
26
+ Instruction: "Provide information on the following:"
27
+ Specific Inputs: {"category": "geography", "question": "capital of France"}
28
+ """
29
 
30
 
31
  def inference(text):