psyche's picture
Update app.py
cd9b772 verified
import os
from threading import Thread
from typing import Iterator
import json
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, AutoModel
from pathlib import Path
from pinecone.grpc import PineconeGRPC as Pinecone
import torch
from huggingface_hub import CommitScheduler
HF_UPLOAD = os.environ.get("HF_UPLOAD")
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
scheduler = CommitScheduler(
repo_id="psyche/llama3-mrc-chat-log",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data",
token=HF_UPLOAD
)
pc = Pinecone(api_key=os.environ.get("PINECONE"))
index = pc.Index("commonsense")
"""
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
retriever_tokenizer = AutoTokenizer.from_pretrained("psyche/dpr-longformer-ko-4096")
retriever = AutoModel.from_pretrained("psyche/dpr-longformer-ko-4096")
retriever.eval()
retriever.to(device)
"""
def save_json(question: str, answer: str) -> None:
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump({"question": question, "answer": answer, "datetime": datetime.now().isoformat(), "label":""}, f, ensure_ascii=False)
f.write("\n")
MAX_MAX_NEW_TOKENS = 8192
DEFAULT_MAX_NEW_TOKENS = 4096
MAX_INPUT_TOKEN_LENGTH = 2048
DESCRIPTION = """\
# Llama-3 8B Korean QA Chatbot \
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "psyche/llama3-8b-instruct-ko"
#model_id = "psyche/meta-llama3-experiments"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True, revision="v4.3")
tokenizer = AutoTokenizer.from_pretrained(model_id, revision="v4.3")
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
"""
retriever_inputs = retriever_tokenizer([message], max_length=1024, truncation=True, return_tensors="pt")
retriever_inputs = {k:v.to(retriever.device) for k,v in retriever_inputs.items()}
with torch.no_grad():
embeddings = retriever(**retriever_inputs).pooler_output
embeddings = embeddings.cpu().numpy()
results = index.query(
vector=embeddings[0],
top_k=1,
include_values=False,
include_metadata=True
)
results = [result for result in results["matches"] if result["score"] > 0.6]
if len(results) > 0:
message = results[0]["metadata"]["text"] + f"\n\nμœ„ λ¬Έλ§₯을 μ°Έκ³ ν•˜μ—¬ 질문 '{message}'에 λ‹΅ν•˜λ©΄?"
"""
conversation.append({"role": "user", "content": message })
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
save_json(message, "".join(outputs))
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.01,
maximum=4.0,
step=0.1,
value=0.01,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.15,
),
],
stop_btn=None,
examples=[
["μ•ˆλ…•?"],
["λ„ˆκ°€ ν•  수 μžˆλŠ”κ²Œ 뭐야?"],
["νŒŒμ΄μ¬μ— λŒ€ν•΄μ„œ μ•Œλ €μ€˜"],
["λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ”?"],
["λ…λ„λŠ” μ–΄λŠλ‚˜λΌ 땅이야?"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()