jeon
commited on
Commit
โข
6071116
1
Parent(s):
1dc5e11
test
Browse files- app.py +104 -42
- hugging-face-korea.png +0 -0
- theme_dropdown.py +0 -57
app.py
CHANGED
@@ -1,58 +1,120 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
4 |
|
5 |
-
|
6 |
|
7 |
-
dropdown, js = create_theme_dropdown()
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
with gr.Column(scale=10):
|
12 |
-
gr.Markdown(
|
13 |
-
"""
|
14 |
-
thank you for dong wook
|
15 |
-
"""
|
16 |
-
)
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
return "https://huggingface.co/spaces/pseudolab/interviewer_chat/blob/main/hugging-face-korea.png"
|
34 |
|
35 |
-
|
36 |
-
time.sleep(0.2)
|
37 |
-
return None
|
38 |
|
39 |
-
with gr.Row():
|
40 |
-
with gr.Column(scale=2):
|
41 |
-
chatbot = gr.Chatbot([("Hello", "Hi")], label="Chatbot")
|
42 |
-
chat_btn = gr.Button("Add messages")
|
43 |
|
44 |
-
|
45 |
-
time.sleep(2)
|
46 |
-
yield [["How are you?", "I am good."]]
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
chatbot,
|
53 |
-
chatbot,
|
54 |
-
)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
demo.queue().launch()
|
|
|
1 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
2 |
+
from peft import PeftModel, PeftConfig
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
import random
|
6 |
+
from textwrap import wrap
|
7 |
+
|
8 |
+
|
9 |
+
# Functions to Wrap the Prompt Correctly
|
10 |
+
def wrap_text(text, width=90):
|
11 |
+
lines = text.split('\n')
|
12 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
13 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
14 |
+
return wrapped_text
|
15 |
+
|
16 |
+
|
17 |
+
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
18 |
+
"""
|
19 |
+
Generates text using a large language model, given a user input and a system prompt.
|
20 |
+
Args:
|
21 |
+
user_input: The user's input text to generate a response for.
|
22 |
+
system_prompt: Optional system prompt.
|
23 |
+
Returns:
|
24 |
+
A string containing the generated text.
|
25 |
+
"""
|
26 |
+
# Combine user input and system prompt
|
27 |
+
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
28 |
+
|
29 |
+
# Encode the input text
|
30 |
+
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
31 |
+
model_inputs = encodeds.to(device)
|
32 |
+
|
33 |
+
# Generate a response using the model
|
34 |
+
output = model.generate(
|
35 |
+
**model_inputs,
|
36 |
+
max_length=max_length,
|
37 |
+
use_cache=True,
|
38 |
+
early_stopping=True,
|
39 |
+
bos_token_id=model.config.bos_token_id,
|
40 |
+
eos_token_id=model.config.eos_token_id,
|
41 |
+
pad_token_id=model.config.eos_token_id,
|
42 |
+
temperature=0.1,
|
43 |
+
do_sample=True
|
44 |
+
)
|
45 |
|
46 |
+
# Decode the response
|
47 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
48 |
|
49 |
+
return response_text
|
50 |
|
|
|
51 |
|
52 |
+
# Define the device
|
53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Use the base model's ID
|
56 |
+
base_model_id = "mistralai/Mistral-7B-v0.1"
|
57 |
+
model_directory = "Tonic/mistralmed"
|
58 |
|
59 |
+
# Instantiate the Tokenizer
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
|
61 |
+
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
|
62 |
+
tokenizer.pad_token = tokenizer.eos_token
|
63 |
+
tokenizer.padding_side = 'left'
|
64 |
|
65 |
+
# Specify the configuration class for the model
|
66 |
+
# model_config = AutoConfig.from_pretrained(base_model_id)
|
67 |
|
68 |
+
# Load the PEFT model with the specified configuration
|
69 |
+
# peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
|
70 |
+
|
71 |
+
# Load the PEFT model
|
72 |
+
peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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")
|
73 |
+
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
|
74 |
+
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")
|
75 |
+
|
76 |
+
|
77 |
+
class ChatBot:
|
78 |
+
def __init__(self):
|
79 |
+
self.history = []
|
80 |
+
|
81 |
+
|
82 |
+
class ChatBot:
|
83 |
+
def __init__(self):
|
84 |
+
# Initialize the ChatBot class with an empty history
|
85 |
+
self.history = []
|
86 |
+
|
87 |
+
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
88 |
+
# Combine the user's input with the system prompt
|
89 |
+
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
90 |
+
|
91 |
+
# Encode the formatted input using the tokenizer
|
92 |
+
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
93 |
|
94 |
+
# Generate a response using the PEFT model
|
95 |
+
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
96 |
|
97 |
+
# Decode the generated response to text
|
98 |
+
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
|
|
99 |
|
100 |
+
return response_text # Return the generated response
|
|
|
|
|
101 |
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
bot = ChatBot()
|
|
|
|
|
104 |
|
105 |
+
title = "์์์๊ธฐ๋ฐ ๋ฉด์ ์๋ฎฌ๋ ์ด์
chat bot (this template based on Tonic's MistralMed Chat)"
|
106 |
+
#description = "์ด ๊ณต๊ฐ์ ์ฌ์ฉํ์ฌ ํ์ฌ ๋ชจ๋ธ์ ํ
์คํธํ ์ ์์ต๋๋ค. [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) ๋๋ ์ด ๊ณต๊ฐ์ ๋ณต์ ํ๊ณ ๋ก์ปฌ ๋๋ ๐คHuggingFace์์ ์ฌ์ฉํ ์ ์์ต๋๋ค. [Discord์์ ํจ๊ป ๋ง๋ค๊ธฐ ์ํด Discord์ ๊ฐ์
ํ์ญ์์ค](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) or duplicate this Space and use it locally or on ๐คHuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
107 |
+
#examples = [["[Question:] What is the proper treatment for buccal herpes?",
|
108 |
+
# "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
|
|
|
|
|
|
|
109 |
|
110 |
+
iface = gr.Interface(
|
111 |
+
fn=bot.predict,
|
112 |
+
title=title,
|
113 |
+
description=description,
|
114 |
+
examples=examples,
|
115 |
+
inputs=["text", "text"], # Take user input and system prompt separately
|
116 |
+
outputs="text",
|
117 |
+
theme="ParityError/Anime"
|
118 |
+
)
|
119 |
|
120 |
+
iface.launch()
|
|
hugging-face-korea.png
DELETED
Binary file (7.98 kB)
|
|
theme_dropdown.py
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import pathlib
|
3 |
-
|
4 |
-
from gradio.themes.utils import ThemeAsset
|
5 |
-
|
6 |
-
|
7 |
-
def create_theme_dropdown():
|
8 |
-
import gradio as gr
|
9 |
-
|
10 |
-
asset_path = pathlib.Path(__file__).parent / "themes"
|
11 |
-
themes = []
|
12 |
-
for theme_asset in os.listdir(str(asset_path)):
|
13 |
-
themes.append(
|
14 |
-
(ThemeAsset(theme_asset), gr.Theme.load(str(asset_path / theme_asset)))
|
15 |
-
)
|
16 |
-
|
17 |
-
def make_else_if(theme_asset):
|
18 |
-
return f"""
|
19 |
-
else if (theme == '{str(theme_asset[0].version)}') {{
|
20 |
-
var theme_css = `{theme_asset[1]._get_theme_css()}`
|
21 |
-
}}"""
|
22 |
-
|
23 |
-
head, tail = themes[0], themes[1:]
|
24 |
-
if_statement = f"""
|
25 |
-
if (theme == "{str(head[0].version)}") {{
|
26 |
-
var theme_css = `{head[1]._get_theme_css()}`
|
27 |
-
}} {" ".join(make_else_if(t) for t in tail)}
|
28 |
-
"""
|
29 |
-
|
30 |
-
latest_to_oldest = sorted([t[0] for t in themes], key=lambda asset: asset.version)[
|
31 |
-
::-1
|
32 |
-
]
|
33 |
-
latest_to_oldest = [str(t.version) for t in latest_to_oldest]
|
34 |
-
|
35 |
-
component = gr.Dropdown(
|
36 |
-
choices=latest_to_oldest,
|
37 |
-
value=latest_to_oldest[0],
|
38 |
-
render=False,
|
39 |
-
label="Select Version",
|
40 |
-
)
|
41 |
-
|
42 |
-
return (
|
43 |
-
component,
|
44 |
-
f"""
|
45 |
-
(theme) => {{
|
46 |
-
if (!document.querySelector('.theme-css')) {{
|
47 |
-
var theme_elem = document.createElement('style');
|
48 |
-
theme_elem.classList.add('theme-css');
|
49 |
-
document.head.appendChild(theme_elem);
|
50 |
-
}} else {{
|
51 |
-
var theme_elem = document.querySelector('.theme-css');
|
52 |
-
}}
|
53 |
-
{if_statement}
|
54 |
-
theme_elem.innerHTML = theme_css;
|
55 |
-
}}
|
56 |
-
""",
|
57 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|